Descripteur
Documents disponibles dans cette catégorie (73)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation / Haowei Zeng in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
[article]
Titre : Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation Type de document : Article/Communication Auteurs : Haowei Zeng, Auteur ; Qing Zhu, Auteur ; Yulin Ding, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aléa
[Termes IGN] cartographie des risques
[Termes IGN] cohérence des données
[Termes IGN] effondrement de terrain
[Termes IGN] prédiction
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal de graphes
[Termes IGN] vulnérabilitéRésumé : (auteur) In complex and heterogeneous geoenvironments, landslides exhibit varying features in different environments, and data in landslide inventories are imbalanced. Existing data-driven landslide susceptibility evaluation (LSE) methods overlook environmental heterogeneity and cannot reliably predict regions with few samples. Alternatively, global random negative sampling strategies may produce imbalanced positive and negative samples in some environments, contributing to inaccurate predictions. This article proposes a graph neural network (GNN) constrained by environmental consistency (GNN-EC) to overcome these problems. The GNN-EC consists of graphs with nodes, and edges. A graph represents the environmental relationships in the study area. Nodes are geographic units delineated from terrain polygon approximation. Edges capture the relationships between node-pairs. Additionally, the weights of edges reflect the similarity between two node environments. A GNN aggregates node information in the graph for LSE. Our experiment showed that the proposed method outperformed the common machine learning methods: increasing prediction accuracy by approximately 7, 5–6 and 3–4% compared to the artificial neural network (ANN), the support vector machine (SVM) and the random forest (RF), respectively. Moreover, our method can maintain high prediction accuracy, even with a small training set. Numéro de notice : A2022-626 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2103819 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1080/13658816.2022.2103819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101396
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022)[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible Developing the potential of airborne lidar systems for the sustainable management of forests / Karun Dayal (2022)
Titre : Developing the potential of airborne lidar systems for the sustainable management of forests : accounting for and managing the impacts of lidar scan angle on ABA model predictions of forest attributes Type de document : Thèse/HDR Auteurs : Karun Dayal, Auteur ; Sylvie Durrieu, Directeur de thèse ; Marc Bouvier, Directeur de thèse Editeur : Paris, Nancy, ... : AgroParisTech (2007 -) Année de publication : 2022 Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l’Institut national des sciences et industries du vivant et de l'environnement - AgroParisTech, Spécialité GéomatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] analyse comparative
[Termes IGN] angle de visée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt alpestre
[Termes IGN] forêt ripicole
[Termes IGN] gestion durable
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] jeu de données localisées
[Termes IGN] ligne de visée
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] peuplement forestier
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] prédiction
[Termes IGN] réseau neuronal artificiel
[Termes IGN] télémètre laser à balayage
[Termes IGN] télémètre laser aéroportéIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) L’information mesurée par Lidar aéroporté dépend de la végétation observée et de la géométrie de l'acquisition lidar, elle-même fonction des paramètres d'acquisition et des propriétés du terrain. Cette thèse vise à comprendre la relation entre la géométrie d'acquisition du lidar et les prédictions d'attributs forestiers en se focalisant sur l'évaluation et la gestion des impacts de l'angle de balayage du lidar sur les métriques lidar et les modèles construits à l’échelle du peuplement (i.e. approches surfaciques ou ABA). Quatre types de forêts différents ont été étudiés, dont trois types de forêts (feuillus, conifères et mixtes) en terrain montagneux et un type de forêt (ripisylve) en terrain relativement plat . La thèse est divisée en trois parties. La première partie évalue l'effet de l'angle de balayage du lidar sur les mesures lidar couramment utilisées dans les prédictions de type ABA. On a ainsi montré que les différentes métriques lidar ne sont pas impactées de la même façon par des changements d'angle de balayage. La deuxième partie de l'étude s’intéresse aux conséquences sur la qualité des modèles de l’introduction dans ces modèles de métriques lidar présentant des sensibilités différentes à l'angle de balayage. Un modèle basé sur un jeu de métriques Lidar prédéfinies, plus ou moins sensibles aux angles de balayage, est utilisé.Les jeux de données lidar existants sont ré-échantillonnés selon les lignes de vol pour 1) simuler des acquisitions lidar avec différentes configurations de balayage, 2) construire des modèles pour une série de configurations de balayage différentes, et 3) comparer la qualité des estimations qui résultent de chaque configuration d’acquisition. Ces comparaisons montrent que l’introduction de métriques sensibles à l’angle de balayage diminue la robustesse des modèles. De plus, la variation de la précision des modèles ABA s’est révélée être plus élevée pour les jeux de données composés de nuages de points acquis depuis une seule ligne de vol que pour ceux composés de nuages de points obtenus en combinant les mesures de plusieurs lignes de vol.Nous avons aussi tenté de normaliser les métriques lidar en utilisant des méthodes de voxellisation pour limiter les impacts des changements d’angles de balayage. Les métriques issues des données voxellisées contribuent à augmenter la précision des prédictions ou à augmenter leur justesse, ou, dans certains cas, les deux en même temps. Dans la dernière partie de l'étude, les propriétés du terrain (topographie) et les paramètres d'acquisition sont explicitement pris en compte dans les modèles. Comme les interactions entre les paramètres d'acquisition lidar, le terrain et les propriétés de la végétation peuvent être complexes, un réseau de neurone (perceptron multicouche) est utilisé pour modéliser les relations entre les attributs forestiers et les métriques lidar en tenant compte de ces interactions entre métriques lidar et géométrie d'acquisition. Cela a permis d'améliorer significativement les prédictions ABA. Note de contenu : Chapter 1: Introduction
1.1 Sustainable Forest Management
1.2 The role of remote sensing in enhancing forest inventory
1.3 Enhanced forest inventory with lidar
1.4 Understanding the role of lidar scan angle in forestry applications
1.5 Research questions and objectives
1.6 Overview of the thesis
Chapter 2: Scan angle impact on lidar-derived metrics used in ABA models for prediction of forest
stand characteristics: a grid based analysis
2.1 Introduction
2.2 Materials
2.3 Methods
2.4 Results
2.5 Discussion
2.6 Conclusions
2.7 Acknowledgement
Chapter 3: An investigation into lidar scan angle impacts on stand attribute predictions in different
forest environments
3.1 Introduction
3.2 Materials and methods
3.3 Results
3.5 Conclusion
3.6 Acknowledgements
Chapter 4: Improving ABA models for forest attribute prediction using neural networks by considering effects of terrain and scan angles on 3D lidar point clouds
4.1 Introduction
4.2 Materials and methods
4.3 Results
4.4 Discussion
4.5 Conclusion
Chapter 5: Conclusion
5.1 Synthesis of the thesis
5.2 Limitations and PerspectivesNuméro de notice : 26957 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Géomatique : Université Paris-Saclay : 2022 Organisme de stage : UMR TETIS - Territoires, Environnement, Télédétection et Information Spatiale nature-HAL : Thèse DOI : sans Date de publication en ligne : 24/01/2023 En ligne : https://hal.science/tel-03954492 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102527 A convolutional neural network approach to predict non‐permissive environments from moderate‐resolution imagery / Seth Goodman in Transactions in GIS, Vol 25 n° 2 (April 2021)
[article]
Titre : A convolutional neural network approach to predict non‐permissive environments from moderate‐resolution imagery Type de document : Article/Communication Auteurs : Seth Goodman, Auteur ; Ariel BenYishay, Auteur ; Daniel Runfola, Auteur Année de publication : 2021 Article en page(s) : pp 674 - 691 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] conflit
[Termes IGN] image Landsat-8
[Termes IGN] implémentation (informatique)
[Termes IGN] Nigéria
[Termes IGN] prédiction
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Convolutional neural networks (CNNs) trained with satellite imagery have been successfully used to generate measures of development indicators, such as poverty, in developing nations. This article explores a CNN‐based approach leveraging Landsat 8 imagery to predict locations of conflict‐related deaths. Using Nigeria as a case study, we use the Armed Conflict Location & Event Data (ACLED) dataset to identify locations of conflict events that did or did not result in a death. Imagery for each location is used as an input to train a CNN to distinguish fatal from non‐fatal events. Using 2014 imagery, we are able to predict the result of conflict events in the following year (2015) with 80% accuracy. While our approach does not replace the need for causal studies into the drivers of conflict death, it provides a low‐cost solution to prediction that requires only publicly available imagery to implement. Findings suggest that the information contained in moderate‐resolution imagery can be used to predict the likelihood of a death due to conflict at a given location in Nigeria the following year, and that CNN‐based methods of estimating development‐related indicators may be effective in applications beyond those explored in the literature. Numéro de notice : A2021-361 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12661 Date de publication en ligne : 13/07/2020 En ligne : https://doi.org/10.1111/tgis.12661 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97625
in Transactions in GIS > Vol 25 n° 2 (April 2021) . - pp 674 - 691[article]Estimation et cartographie d’attributs forestiers haute résolution : Le potentiel des approches multisource / Cédric Vega (2021)
Titre : Estimation et cartographie d’attributs forestiers haute résolution : Le potentiel des approches multisource Type de document : Article/Communication Auteurs : Cédric Vega , Auteur ; Milena Planells, Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2021 Conférence : Atelier Theia 2021, Les utilisations de la télédétection pour la forêt 11/10/2021 Montpellier France slides & videos Langues : Français (fre) Descripteur : [Termes IGN] données auxiliaires
[Termes IGN] données multisources
[Termes IGN] image optique
[Termes IGN] image radar
[Termes IGN] modèle numérique
[Termes IGN] prédiction
[Termes IGN] segmentation en régions
[Termes IGN] série temporelle
[Termes IGN] surveillance forestière
[Vedettes matières IGN] Inventaire forestierNuméro de notice : C2021-041 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET/IMAGERIE/INFORMATIQUE/MATHEMATIQUE Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99239 Documents numériques
peut être téléchargé
Estimation et cartographie d’attributs forestiers ... - diaporamaAdobe Acrobat PDF A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery / Bo Yang in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
[article]
Titre : A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery Type de document : Article/Communication Auteurs : Bo Yang, Auteur ; Lin Liu, Auteur ; Minxuan Lan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1740 - 1764 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] coefficient de corrélation
[Termes IGN] criminalité
[Termes IGN] données spatiotemporelles
[Termes IGN] géostatistique
[Termes IGN] historique des données
[Termes IGN] image NPP-VIIRS
[Termes IGN] krigeage
[Termes IGN] modèle dynamique
[Termes IGN] nuit
[Termes IGN] Ohio (Etats-Unis)
[Termes IGN] prédiction
[Termes IGN] prévention des risques
[Termes IGN] prise de vue nocturne
[Termes IGN] test statistique
[Termes IGN] zone urbaineRésumé : (auteur) Accurate crime prediction can help allocate police resources for crime reduction and prevention. There are two popular approaches to predict criminal activities: one is based on historical crime, and the other is based on environmental variables correlated with criminal patterns. Previous research on geo-statistical modeling mainly considered one type of data in space-time domain, and few sought to blend multi-source data. In this research, we proposed a spatio-temporal Cokriging algorithm to integrate historical crime data and urban transitional zones for more accurate crime prediction. Time-series historical crime data were used as the primary variable, while urban transitional zones identified from the VIIRS nightlight imagery were used as the secondary co-variable. The algorithm has been applied to predict weekly-based street crime and hotspots in Cincinnati, Ohio. Statistical tests and Predictive Accuracy Index (PAI) and Predictive Efficiency Index (PEI) tests were used to validate predictions in comparison with those of the control group without using the co-variable. The validation results demonstrate that the proposed algorithm with historical crime data and urban transitional zones increased the correlation coefficient by 5.4% for weekdays and by 12.3% for weekends in statistical tests, and gained higher hit rates measured by PAI/PEI in the hotspots test. Numéro de notice : A2020-475 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1737701 Date de publication en ligne : 13/03/2020 En ligne : https://doi.org/10.1080/13658816.2020.1737701 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95622
in International journal of geographical information science IJGIS > vol 34 n° 9 (September 2020) . - pp 1740 - 1764[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020091 RAB Revue Centre de documentation En réserve L003 Disponible Real-time clock prediction of multi-GNSS satellites and its application in precise point positioning / Yaquan Peng in Advances in space research, vol 64 n°7 (1 October 2019)PermalinkA methodology with a distributed algorithm for large-scale trajectory distribution prediction / QiuLei Guo in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)PermalinkAnalysis of GPS satellite clock prediction performance with different update intervals and application to real-time PPP / H. Yang in Survey review, vol 51 n° 364 (January 2019)PermalinkMachine learning and geographic information systems for large-scale mapping of renewable energy potential / Dan Assouline (2019)PermalinkPermalinkPredicting temperate forest stand types using only structural profiles from discrete return airborne lidar / Melissa Fedrigo in ISPRS Journal of photogrammetry and remote sensing, vol 136 (February 2018)PermalinkPermalinkImproving the prediction of African savanna vegetation variables using time series of MODIS products / Miriam Tsalyuk in ISPRS Journal of photogrammetry and remote sensing, vol 131 (September 2017)PermalinkQuantifying the sources of epistemic uncertainty in model predictions of insect disturbances in an uncertain climate / David R. Gray in Annals of Forest Science, vol 74 n° 3 (September 2017)PermalinkTM-Based SOC models augmented by auxiliary data for carbon crediting programs in semi-arid environments / Salahuddin M. Jaber in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 6 (June 2017)Permalink