Descripteur
Termes IGN > sciences naturelles > physique > électronique > composant électronique > processeur > processeur graphique
processeur graphique |
Documents disponibles dans cette catégorie (22)



Etendre la recherche sur niveau(x) vers le bas
Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network / Alex David Singleton in Computers, Environment and Urban Systems, vol 95 (July 2022)
![]()
[article]
Titre : Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network Type de document : Article/Communication Auteurs : Alex David Singleton, Auteur ; Dani Arribas-Bel, Auteur ; John Murray, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101802 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] bâtiment
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Grande-Bretagne
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] morphologie urbaine
[Termes IGN] pondération
[Termes IGN] processeur graphiqueRésumé : (auteur) The increased availability of high-resolution multispectral imagery captured by remote sensing platforms provides new opportunities for the characterisation and differentiation of urban context. The discovery of generalized latent representations from such data are however under researched within the social sciences. As such, this paper exploits advances in machine learning to implement a new method of capturing measures of urban context from multispectral satellite imagery at a very small area level through the application of a convolutional autoencoder (CAE). The utility of outputs from the CAE is enhanced through the application of spatial weighting, and the smoothed outputs are then summarised using cluster analysis to generate a typology comprising seven groups describing salient patterns of differentiated urban context. The limits of the technique are discussed with reference to the resolution of the satellite data utilised within the study and the interaction between the geography of the input data and the learned structure. The method is implemented within the context of Great Britain, however, is applicable to any location where similar high resolution multispectral imagery are available. Numéro de notice : A2022-370 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101802 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101802 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100606
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101802[article]Detecting and visualizing observation hot-spots in massive volunteer-contributed geographic data across spatial scales using GPU-accelerated kernel density estimation / Guiming Zhang in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
![]()
[article]
Titre : Detecting and visualizing observation hot-spots in massive volunteer-contributed geographic data across spatial scales using GPU-accelerated kernel density estimation Type de document : Article/Communication Auteurs : Guiming Zhang, Auteur Année de publication : 2022 Article en page(s) : n° 55 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] données localisées des bénévoles
[Termes IGN] données massives
[Termes IGN] estimation par noyau
[Termes IGN] exploration de données géographiques
[Termes IGN] géovisualisation
[Termes IGN] processeur graphique
[Termes IGN] qualité des données
[Termes IGN] réseau social
[Termes IGN] tâche claireRésumé : (auteur) Volunteer-contributed geographic data (VGI) is an important source of geospatial big data that support research and applications. A major concern on VGI data quality is that the underlying observation processes are inherently biased. Detecting observation hot-spots thus helps better understand the bias. Enabled by the parallel kernel density estimation (KDE) computational tool that can run on multiple GPUs (graphics processing units), this study conducted point pattern analyses on tens of millions of iNaturalist observations to detect and visualize volunteers’ observation hot-spots across spatial scales. It was achieved by setting varying KDE bandwidths in accordance with the spatial scales at which hot-spots are to be detected. The succession of estimated density surfaces were then rendered at a sequence of map scales for visual detection of hot-spots. This study offers an effective geovisualization scheme for hierarchically detecting hot-spots in massive VGI datasets, which is useful for understanding the pattern-shaping drivers that operate at multiple spatial scales. This research exemplifies a computational tool that is supported by high-performance computing and capable of efficiently detecting and visualizing multi-scale hot-spots in geospatial big data and contributes to expanding the toolbox for geospatial big data analytics. Numéro de notice : A2022-091 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11010055 Date de publication en ligne : 12/01/2022 En ligne : https://doi.org/10.3390/ijgi11010055 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99507
in ISPRS International journal of geo-information > vol 11 n° 1 (January 2022) . - n° 55[article]Recursive Gauss-Helmert model with equality constraints applied to the efficient system calibration of a 3D laser scanner / Sören Vogel in Journal of applied geodesy, vol 16 n° 1 (January 2022)
![]()
[article]
Titre : Recursive Gauss-Helmert model with equality constraints applied to the efficient system calibration of a 3D laser scanner Type de document : Article/Communication Auteurs : Sören Vogel, Auteur ; Dominik Ernst, Auteur ; Ingo Neumann, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 37 - 57 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] contrainte d'intégrité
[Termes IGN] étalonnage d'instrument
[Termes IGN] filtre de Kalman
[Termes IGN] géoréférencement
[Termes IGN] modèle de Gauss-Helmert
[Termes IGN] positionnement cinématique
[Termes IGN] processeur graphique
[Termes IGN] télémètre laser aéroportéRésumé : (auteur) Sensors for environmental perception are nowadays applied in numerous vehicles and are expected to be used in even higher quantities for future autonomous driving. This leads to an increasing amount of observation data that must be processed reliably and accurately very quickly. For this purpose, recursive approaches are particularly suitable in terms of their efficiency when powerful CPUs and GPUs are uneconomical, too large, or too heavy for certain applications. If explicit functional relationships between the available observations and the requested parameters are used to process and adjust the observation data, complementary approaches exist. The situation is different for implicit relationships, which could not be considered recursively for a long time but only in the context of batch adjustments. In this contribution, a recursive Gauss-Helmert model is presented that can handle explicit and implicit equations and thus allows high flexibility. This recursive estimator is based on a Kalman filter for implicit measurement equations, which has already been used for georeferencing kinematic multi-sensor systems (MSS) in urban environments. Furthermore, different methods for introducing additional information using constraints and the resulting added value are shown. Practical application of the methodology is given by an example for the calibration of a laser scanner for a MSS. Numéro de notice : A2022-053 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1515/jag-2021-0026 Date de publication en ligne : 15/10/2021 En ligne : https://doi.org/10.1515/jag-2021-0026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99448
in Journal of applied geodesy > vol 16 n° 1 (January 2022) . - pp 37 - 57[article]Efficient image dataset classification difficulty estimation for predicting deep-learning accuracy / Florian Scheidegger in The Visual Computer, vol 37 n° 6 (June 2021)
![]()
[article]
Titre : Efficient image dataset classification difficulty estimation for predicting deep-learning accuracy Type de document : Article/Communication Auteurs : Florian Scheidegger, Auteur ; Roxana Istrate, Auteur ; Giovanni Mariani, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1593 - 1610 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] architecture de réseau
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] distance de Fréchet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] jeu de données
[Termes IGN] précision de la classification
[Termes IGN] processeur graphiqueRésumé : (auteur) In the deep-learning community, new algorithms are published at a very fast pace. Therefore, solving an image classification problem for new datasets becomes a challenging task, as it requires to re-evaluate published algorithms and their different configurations in order to find a close to optimal classifier. To facilitate this process, before biasing our decision toward a class of neural networks or running an expensive search over the network space, we propose to estimate the classification difficulty of the dataset. Our method computes a single number that characterizes the dataset difficulty 97× faster than training state-of-the-art networks. The proposed method can be used in combination with network topology and hyper-parameter search optimizers to efficiently drive the search toward promising neural network configurations. Numéro de notice : A2021-533 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01922-5 Date de publication en ligne : 28/07/2020 En ligne : https://doi.org/10.1007/s00371-020-01922-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97993
in The Visual Computer > vol 37 n° 6 (June 2021) . - pp 1593 - 1610[article]A Bayesian displacement field approach to accurate registration of SAR images / Mingtao Ding in Geocarto international, vol 36 n° 9 ([15/05/2021])
![]()
[article]
Titre : A Bayesian displacement field approach to accurate registration of SAR images Type de document : Article/Communication Auteurs : Mingtao Ding, Auteur ; Hongyan Wang, Auteur ; Lichun Sui, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1007 - 1026 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] arc
[Termes IGN] enregistrement de données
[Termes IGN] estimation bayesienne
[Termes IGN] image radar moirée
[Termes IGN] implémentation (informatique)
[Termes IGN] inférence
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] processeur graphique
[Termes IGN] superposition d'images
[Termes IGN] transformationRésumé : (auteur) Precise registration of synthetic aperture radar (SAR) images is a nontrivial task since a change in radar-acquisition geometry generates image shifts. In existing system, either the transformation functions are oversimplified, or external measures such as digital elevation model and flight track are required to be precise. In this paper, we proposed a generative Bayesian approach to modelling the displacement vectors that map the position of each pixel in the image, thus avoiding degradation of the transformation function. Rather than providing a point estimate for the transformation function, the proposed method yields a full posterior density function of the transformation function. Especially, the Bayesian model learns all the parameters adaptively, and the procedure is fully automatic. The proposed model is comparable in accuracy to state-of-the-art optical flow methods on the challenging Sintel benchmarks, and outperforms currently published SAR image registration methods on some real SAR data with critical scenes. Numéro de notice : A2021-343 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1633418 Date de publication en ligne : 07/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1633418 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97584
in Geocarto international > vol 36 n° 9 [15/05/2021] . - pp 1007 - 1026[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2021091 SL Revue Centre de documentation Revues en salle Disponible Hyperspectral image denoising via clustering-based latent variable in variational Bayesian framework / Peyman Azimpour in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkPermalinkRasterisation-based progressive photon mapping / Iordanis Evangelou in The Visual Computer, vol 36 n° 10 - 12 (October 2020)
PermalinkCSVM architectures for pixel-wise object detection in high-resolution remote sensing images / Youyou Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkLocal terrain modification method considering physical feature constraints for vector elements / Jiangfeng She in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
PermalinkImage processing applications in object detection and graph matching: from Matlab development to GPU framework / Beibei Cui (2020)
PermalinkBayesian iterative reconstruction methods for 3D X-ray Computed Tomography / Camille Chapdelaine (2019)
PermalinkPermalinkAn efficient data organization and scheduling strategy for accelerating large vector data rendering / Mingqiang Guo in Transactions in GIS, vol 21 n° 6 (December 2017)
PermalinkA GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data / Guiming Zhang in International journal of geographical information science IJGIS, vol 31 n° 9-10 (September - October 2017)
Permalink