Descripteur
Documents disponibles dans cette catégorie (22)



Etendre la recherche sur niveau(x) vers le bas
Research on machine intelligent perception of urban geographic location based on high resolution remote sensing images / Jun Chen in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 4 (April 2022)
![]()
[article]
Titre : Research on machine intelligent perception of urban geographic location based on high resolution remote sensing images Type de document : Article/Communication Auteurs : Jun Chen, Auteur ; Cunjian Yang, Auteur ; Zengyang Yu, Auteur Année de publication : 2022 Article en page(s) : pp 223 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cognition
[Termes IGN] détection d'objet
[Termes IGN] extraction automatique
[Termes IGN] géolocalisation
[Termes IGN] image à haute résolution
[Termes IGN] intelligence artificielle
[Termes IGN] reconnaissance automatique
[Termes IGN] zone urbaineRésumé : (auteur) Machine intelligent perception (MIP) provides a novel way for human beings to recognize geographical locations automatically. MIP of geographical locations enables computers to describe locations automatically and quantitatively by extracting Earth's surface features and building relationships. The earth surface fingerprint is established here by mining the relationship between spatial objects with stable characteristics extracted from urban high-resolution remote sensing images, which realizes intelligent perception of geographical location innovatively. Mask Region-based Convolutional Neural Network is used to automatically extract the spatial objects such as playgrounds, crossroads, and bridges from the images. Then, the extracted spatial objects are encoded according to the landuse type, distance, and angle of 24 nearest objects to construct urban surface fingerprint database. The urban surface fingerprint database is used to match the geographical location of spatial objects in local images so that the matching algorithm can be used for machine recognition of the geographical location of specific objects in the target image. Taking the main cities in China as the experimental area, the success rate of location perception is 92%. We have made a useful exploration in the field of MIP of geographical location, hoping to promote the development of human cognition of geographical location. Numéro de notice : A2022-285 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00017R3 Date de publication en ligne : 04/04/2022 En ligne : https://doi.org/10.14358/PERS.21-00017R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100319
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 4 (April 2022) . - pp 223 - 231[article]A novel method based on deep learning, GIS and geomatics software for building a 3D city model from VHR satellite stereo imagery / Massimiliano Pepe in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
![]()
[article]
Titre : A novel method based on deep learning, GIS and geomatics software for building a 3D city model from VHR satellite stereo imagery Type de document : Article/Communication Auteurs : Massimiliano Pepe, Auteur ; Domenica Costantino, Auteur ; Vincenzo Saverio Alfio, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 697 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de Gram-Schmidt
[Termes IGN] apprentissage profond
[Termes IGN] ArcGIS
[Termes IGN] détection du bâti
[Termes IGN] empreinte
[Termes IGN] hauteur du bâti
[Termes IGN] image à très haute résolution
[Termes IGN] image Worldview
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle numérique de surface
[Termes IGN] Oman
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] reconnaissance automatique
[Termes IGN] système d'information géographiqueRésumé : (auteur) The aim of the paper is to identify a suitable method for the construction of a 3D city model from stereo satellite imagery. In order to reach this goal, it is necessary to build a workflow consisting of three main steps: (1) Increasing the geometric resolution of the color images through the use of pan-sharpening techniques, (2) identification of the buildings’ footprint through deep-learning techniques and, finally, (3) building an algorithm in GIS (Geographic Information System) for the extraction of the elevation of buildings. The developed method was applied to stereo imagery acquired by WorldView-2 (WV-2), a commercial Earth-observation satellite. The comparison of the different pan-sharpening techniques showed that the Gram–Schmidt method provided better-quality color images than the other techniques examined; this result was deduced from both the visual analysis of the orthophotos and the analysis of quality indices (RMSE, RASE and ERGAS). Subsequently, a deep-learning technique was applied for pan sharpening an image in order to extract the footprint of buildings. Performance indices (precision, recall, overall accuracy and the F1measure) showed an elevated accuracy in automatic recognition of the buildings. Finally, starting from the Digital Surface Model (DSM) generated by satellite imagery, an algorithm built in the GIS environment allowed the extraction of the building height from the elevation model. In this way, it was possible to build a 3D city model where the buildings are represented as prismatic solids with flat roofs, in a fast and precise way. Numéro de notice : A2021-801 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10100697 Date de publication en ligne : 14/10/2021 En ligne : https://doi.org/10.3390/ijgi10100697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98853
in ISPRS International journal of geo-information > vol 10 n° 10 (October 2021) . - n° 697[article]Activity recognition in residential spaces with Internet of things devices and thermal imaging / Kshirasagar Naik in Sensors, vol 21 n° 3 (February 2021)
![]()
[article]
Titre : Activity recognition in residential spaces with Internet of things devices and thermal imaging Type de document : Article/Communication Auteurs : Kshirasagar Naik, Auteur ; Tejas Pandit, Auteur ; Nitin Naik, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] compréhension de l'image
[Termes IGN] contrôle par télédétection
[Termes IGN] détection d'événement
[Termes IGN] espace intérieur
[Termes IGN] image RVB
[Termes IGN] image thermique
[Termes IGN] intelligence artificielle
[Termes IGN] internet des objets
[Termes IGN] itération
[Termes IGN] modèle stéréoscopique
[Termes IGN] objet mobile
[Termes IGN] reconnaissance automatique
[Termes IGN] reconnaissance d'objets
[Termes IGN] scène 3DRésumé : (auteur) In this paper, we design algorithms for indoor activity recognition and 3D thermal model generation using thermal images, RGB images, captured from external sensors, and the internet of things setup. Indoor activity recognition deals with two sub-problems: Human activity and household activity recognition. Household activity recognition includes the recognition of electrical appliances and their heat radiation with the help of thermal images. A FLIR ONE PRO camera is used to capture RGB-thermal image pairs for a scene. Duration and pattern of activities are also determined using an iterative algorithm, to explore kitchen safety situations. For more accurate monitoring of hazardous events such as stove gas leakage, a 3D reconstruction approach is proposed to determine the temperature of all points in the 3D space of a scene. The 3D thermal model is obtained using the stereo RGB and thermal images for a particular scene. Accurate results are observed for activity detection, and a significant improvement in the temperature estimation is recorded in the 3D thermal model compared to the 2D thermal image. Results from this research can find applications in home automation, heat automation in smart homes, and energy management in residential spaces. Numéro de notice : A2021-159 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21030988 Date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.3390/s21030988 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97075
in Sensors > vol 21 n° 3 (February 2021) . - n° 988[article]Multiview automatic target recognition for infrared imagery using collaborative sparse priors / Xuelu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
![]()
[article]
Titre : Multiview automatic target recognition for infrared imagery using collaborative sparse priors Type de document : Article/Communication Auteurs : Xuelu Li, Auteur ; Vishal Monga, Auteur ; Abhijit Mahalanobis, Auteur Année de publication : 2020 Article en page(s) : pp 6776 - 6790 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] ajustement de paramètres
[Termes IGN] apprentissage profond
[Termes IGN] détection de cible
[Termes IGN] données clairsemées
[Termes IGN] estimation bayesienne
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à basse résolution
[Termes IGN] image infrarouge
[Termes IGN] reconnaissance automatiqueRésumé : (auteur) The low resolution of infrared (IR) images makes feature extraction for classification of a challenging work. Learning-based methods, therefore, are preferred to be used on such raw imagery. In this article, in order to avoid difficulties in feature extraction, a novel multitask extension of the widely used sparse-representation-classification (SRC) method is proposed in both single and multiview set-ups. That is, the test sample could be a single IR image or images from different views. In both single-view and multiview scenarios, we try to employ collaborative spike and slab priors. This is because the traditional sparsity-inducing measures such as the l0 -row pseudonorm makes it hard to capture the sparse structure of the coefficient matrix when expanded in terms of a training dictionary, and the priors are proved to be able to capture fairly general sparse structures. Furthermore, a joint prior and sparse coefficient estimation method (JPCEM) is proposed for the first time in this article in order to alleviate the need to handpick prior parameters required before classification. Multiple experiments are conducted on a synthetic Comanche Forward Looking IR (FLIR) Automatic Target Recognition (ATR) database collected by Army Research Lab and a challenging mid-wave IR (MWIR) image ATR database made available by the U.S. Army Night Vision and Electronic Sensors Directorate. The final results substantiate the merits of the proposed JPCEM through comparisons with other state-of-the-art methods, including both the ones based on SRC and the ones constructed using deep learning frameworks. Numéro de notice : A2020-584 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2973969 Date de publication en ligne : 26/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2973969 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95908
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 6776 - 6790[article]Navigation des personnes aux moyens des technologies des smartphones et des données d’environnements cartographiés / Fadoua Taia Alaoui (2018)
![]()
Titre : Navigation des personnes aux moyens des technologies des smartphones et des données d’environnements cartographiés Type de document : Thèse/HDR Auteurs : Fadoua Taia Alaoui, Auteur ; Valérie Renaudin, Directeur de thèse Editeur : Nantes : Ecole Centrale de Nantes Année de publication : 2018 Autre Editeur : Université Bretagne Loire Importance : 163 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Ecole Centrale de Nantes, spécialité Signal, Image, VisionLangues : Français (fre) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] algorithme de filtrage
[Termes IGN] centrale inertielle
[Termes IGN] classification dirigée
[Termes IGN] correction angulaire
[Termes IGN] données GNSS
[Termes IGN] filtrage bayésien
[Termes IGN] filtre de Kalman
[Termes IGN] fusion de données
[Termes IGN] modèle cartographique
[Termes IGN] navigation inertielle
[Termes IGN] point d'intérêt
[Termes IGN] positionnement en intérieur
[Termes IGN] reconnaissance automatique
[Termes IGN] service fondé sur la position
[Termes IGN] téléphone intelligentRésumé : (auteur) La navigation inertielle grâce aux capteurs intégrés dans les smartphones permet d’assurer une géolocalisation continue même en absence de signal GNSS. Ces capteurs bas coût délivrent néanmoins des mesures bruitées qui engendrent une dérive de la trajectoire. La technique PDR qui est une technique de navigation inertielle par détection de pas souffre de deux limites principales. La première est l’estimation de la longueur de pas car cette dernière dépend des caractéristiques physiques de chaque utilisateur, et la seconde est le résultat d’une dérive angulaire combinée avec un biais lié au portage du capteur à la main. Dans le contexte du projet HAPPYHAND, ce travail s’intéresse à l’exploitation de la carte pour corriger ces différentes erreurs. Un réseau de navigation topologique est exploité pour corriger à la fois les erreurs angulaires et calibrer le modèle de longueur de pas. Ce modèle est ensuite augmenté par un processus de mise à jour de position par détection de points d’intérêt. Note de contenu : 1- Introduction
2- Navigation autonome grâce aux mesures inertielles ou GNSS
3- Modèles cartographiques pour la localisation
4- Liaison entre la carte et la signature de mouvement
5- Hybridation Carte-IMMU-Magnétomètre-Baromètre
6- Evaluation expérimentale des performances
Conclusion et perspectivesNuméro de notice : 25916 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse française Note de thèse : Thèse de Doctorat : Spécialité Signal, Image, Vision : Nantes : 2018 Organisme de stage : Laboratoire GEOLOC (IFSTTAR) nature-HAL : Thèse DOI : sans En ligne : https://hal.archives-ouvertes.fr/tel-02157807 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96039 Trajectory-based place-recognition for efficient large scale localization / Simon Lynen in International journal of computer vision, vol 124 n° 1 (August 2017)
PermalinkUnsupervised feature learning for land-use scene recognition / Jiayuan Fan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)
PermalinkSingle Image Super-Resolution based on Neural Networks for text and face recognition / Clément Peyrard (2017)
PermalinkImage based geo-localization in the Alps / Olivier Saurer in International journal of computer vision, vol 116 n° 3 (February 2016)
PermalinkFast robust large-scale mapping from video and internet photo collections / J. Frahm in ISPRS Journal of photogrammetry and remote sensing, vol 65 n° 6 (November - December 2010)
PermalinkIndexation rapide de documents audio par traitement morphologique de la parole / F. Salama in Ingénierie des systèmes d'information, ISI : Revue des sciences et technologies de l'information, RSTI, vol 15 n° 2 (mars - avril 2010)
PermalinkA structure recognition technique in contextual generalisation of buildings and built-up areas / Melih Basaraner in Cartographic journal (the), vol 45 n° 4 (November 2008)
Permalink8es rencontres nationales des jeunes chercheurs en intelligence artificielle, RJCIA 2007, 4 - 6 juillet 2007, Grenoble, France / Bruno Zanuttini (2007)
PermalinkA novel transductive SVM for semisupervised classification of remote-sensing images / Lorenzo Bruzzone in IEEE Transactions on geoscience and remote sensing, vol 44 n° 11 Tome 2 (November 2006)
PermalinkAutomatic 3D object recognition and reconstruction based on neuro-fuzzy modelling / F. Samadzadegan in ISPRS Journal of photogrammetry and remote sensing, vol 59 n° 5 (August - October 2005)
Permalink