Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > signature spectrale > réflectance > réflectance du sol
réflectance du sol |
Documents disponibles dans cette catégorie (37)



Etendre la recherche sur niveau(x) vers le bas
A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data / Linhua Ma in Science of the total environment, vol 859 n° 1 (February 2023)
![]()
[article]
Titre : A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data Type de document : Article/Communication Auteurs : Linhua Ma, Auteur ; Yuanlai Cui, Auteur ; Bo Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 159917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] Corée
[Termes IGN] données multisources
[Termes IGN] Etats-Unis
[Termes IGN] humidité du sol
[Termes IGN] image à haute résolution
[Termes IGN] image infrarouge
[Termes IGN] Italie
[Termes IGN] méthane
[Termes IGN] modélisation
[Termes IGN] réflectance du sol
[Termes IGN] rizière
[Termes IGN] système d'information géographique
[Termes IGN] variation saisonnièreRésumé : (auteur) Quantification of regional methane (CH4) gas emission in the paddy fields is critical under climate warming. Mechanism models generally require numerous parameters while empirical models are too coarse. Based on the mechanism and structure of the widely used model CH4MOD, a GIS-based Regional CH4 Emission Calculation (GRMC) method was put forward by introducing multiple sources of remote sensing images, including MOD09A1, MOD11A2, MOD15A2H as well as local water management standards. The stress of soil moisture condition (f(water)) on CH4 emissions was quantified by calculating the redox potential (Eh) from days after flooding or falling dry. The f(water)-t curve was calculated under different exogenous organic matter addition. Combining the f(water)-t curve with local water management standards, the seasonal variation of f(water) was obtained. It was proven that f(water) was effective in reflecting the regulation role of soil moisture condition. The GRMC was tested at four Eddy Covariance (EC) sites: Nanchang (NC) in China, Twitchell (TWT) in the USA, Castellaro (CAS) in Italy and Cheorwon (CRK) in Korea and has been proven to well track the seasonal dynamics of CH4 emissions with R2 ranges of 0.738–0.848, RMSE ranges of 31.94–149.22 mg C/m2d and MBE ranges of −66.42- -14.79 mg C/m2d. The parameters obtained in Nanchang (NC) site in China were then applied to the Ganfu Plain Irrigation System (GFPIS), a typical rice planting area of China, to analyse the spatial-temporal variations of CH4 emissions. The total CH4 emissions of late rice in the GFPIS from 2001 to 2013 was in the range of 14.47–20.48 (103 t CH4-C). Ts caused spatial variation of CH4 production capacity, resulting in the spatial variability of CH4 emissions. Overall, the GRMC is effective in obtaining CH4 emissions from rice fields on a regional scale. Numéro de notice : A2023-015 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.scitotenv.2022.159917 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.159917 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102133
in Science of the total environment > vol 859 n° 1 (February 2023) . - n° 159917[article]Deep-learning-based burned area mapping using the synergy of Sentinel-1&2 data / Qi Zhang in Remote sensing of environment, vol 264 (October 2021)
![]()
[article]
Titre : Deep-learning-based burned area mapping using the synergy of Sentinel-1&2 data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Ruiheng Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112575 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] cartographie thématique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] incendie
[Termes IGN] réflectance du sol
[Termes IGN] réseau neuronal siamoisRésumé : (auteur) Around 350 million hectares of land are affected by wildfires every year influencing the health of ecosystems and leaving a trail of destruction. Accurate information over burned areas (BA) is essential for governments and communities to prioritize recovery actions. Prior research over the past decades has established the potentials and limitations of space-borne earth observation for mapping BA over large geographic areas at various scales. The operational deployment of Sentinel-1 and Sentinel-2 constellations significantly improved the quality and quantity of the imagery from the microwave (C-band) and optical regions on the spectrum. Based on that, this study set to investigate whether the existing coarse BA products can be further improved by the synergy of optical surface reflectance (SR), radar backscatter coefficient (BS), and/or radar interferometric coherence (COR) data with higher spatial resolutions. A Siamese Self-Attention (SSA) classification strategy is proposed for the multi-sensor BA mapping and a multi-source dataset is constructed at the object level for the training and testing. Results are analyzed by test sites, feature sources, and classification strategies to appraise the improvements achieved by the proposed method. Numéro de notice : A2021-807 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112575 Date de publication en ligne : 06/07/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112575 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98866
in Remote sensing of environment > vol 264 (October 2021) . - n° 112575[article]Estimating regional soil moisture with synergistic use of AMSR2 and MODIS images / Majid Rahimzadegan in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
![]()
[article]
Titre : Estimating regional soil moisture with synergistic use of AMSR2 and MODIS images Type de document : Article/Communication Auteurs : Majid Rahimzadegan, Auteur ; Arash Davari, Auteur ; Ali Sayadi, Auteur Année de publication : 2021 Article en page(s) : pp 649-660 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Advanced Microwave Scanning Radiometer
[Termes IGN] coefficient de corrélation
[Termes IGN] humidité du sol
[Termes IGN] image Aqua-AMSR
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] Iran
[Termes IGN] polarisation
[Termes IGN] réflectance du solRésumé : (Auteur) Soil moisture content (SMC), product of Advanced Microwave Scanning Radiometer 2 (AMSR2), is not at an adequate level of accuracy on a regional scale. The aim of this study is to introduce a simple method to estimate SMC while synergistically using AMSR2 and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements with a higher accuracy on a regional scale. Two MODIS products, including daily reflectance (MYD021) and nighttime land surface temperature (LST) products were used. In 2015, 1442 in situ SMC measurements from six stations in Iran were used as ground-truth data. Twenty models were evaluated using combinations of polarization index (PI), index of soil wetness (ISW), normalized difference vegetation index (NDVI), and LST. The model revealed the best results using a quadratic combination of PI and ISW, a linear form of LST, and a constant value. The overall correlation coefficient, root-mean-square error, and mean absolute error were 0.59, 4.62%, and 3.01%, respectively. Numéro de notice : A2021-673 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00085 Date de publication en ligne : 01/09/2021 En ligne : https://doi.org/10.14358/PERS.20-00085 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98835
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 9 (September 2021) . - pp 649-660[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021091 SL Revue Centre de documentation Revues en salle Disponible Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa / Tomoaki Miura in Remote sensing of environment, vol 257 (May 2021)
![]()
[article]
Titre : Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa Type de document : Article/Communication Auteurs : Tomoaki Miura, Auteur ; Charlotte Z. Smith, Auteur ; Hiroki Yoshioka, Auteur Année de publication : 2021 Article en page(s) : n° 112344 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Enhanced vegetation index
[Termes IGN] image Aqua-MODIS
[Termes IGN] image proche infrarouge
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] Nevada (Etats-Unis)
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] réflectance du solRésumé : (auteur) Spectral vegetation index (VI) time series data from coarse resolution satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), have been utilized in studying vegetation dynamics. Numerous studies have evaluated how well VI products capture variations in vegetation biophysical or physiological conditions. Equally important is to evaluate VI products over “zero vegetation” surfaces consisting of soils, litters, and/or rocks, as they define the lower bound for vegetation detection. VIs, however, vary over zero vegetation surfaces as a function of soil moisture content and surface roughness. In this study, we evaluated the behavior of VIs from Terra MODIS (T-MODIS), Aqua MODIS (A-MODIS), and Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-VIIRS) at Railroad Valley Playa, Nevada for a period from April 2013 to September 2019. The playa is a dried lakebed devoid of vegetation throughout the year. Long-term in situ reflectance measurements acquired over the 1 km-by−1 km Radiometric Calibration Test Site (RadCaTS) located on the playa were obtained from the Radiometric Calibration Network (RadCalNet) portal and used as a reference. Three VIs were analyzed, including the normalized difference VI (NDVI), enhanced VI (EVI), and two-band EVI (EVI2). RadCaTS NDVI, EVI, and EVI2 of the playa surface increased and decreased occasionally for the time period examined in this study, and the satellite NDVIs, EVIs, and EVI2s had comparable temporal signatures to the RadCaTS counterparts. T-MODIS and A-MODIS NDVI and EVI2 values were comparable to the RadCaTS counterparts, whereas T-MODIS and A-MODIS EVI values were lower than the RadCaTS counterparts by ~0.006 and ~ 0.01 EVI units, respectively. All the three VIs of S-VIIRS were consistently higher than their RadCaTS counterparts by ~0.008 VI units, due to the higher near-infrared (NIR) reflectances of S-VIIRS than the RadCaTS NIR reflectance. The red and NIR, and red and blue reflectances each formed linear relationships (i.e., soil lines) for each of the three sensors. Variations in reflectance due to surface conditions and observation geometries all appeared as variations along these soil lines. The satellite red-NIR soil lines were comparable to the RadCaTS counterparts, whereas the satellite red-blue soil lines had steeper slopes than the RadCaTS counterparts due to a negative bias in the satellite blue reflectances. This translated into the T-MODIS and A-MODIS EVI behaviors different from those depicted by RadCaTS EVI, and the satellite NDVI and EVI2 behaving more comparably with the RadCaTS counterparts and across the three sensors than the satellite EVI. Numéro de notice : A2021-277 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112344 Date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112344 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97370
in Remote sensing of environment > vol 257 (May 2021) . - n° 112344[article]A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing / Ran Pelta in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
![]()
[article]
Titre : A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing Type de document : Article/Communication Auteurs : Ran Pelta, Auteur ; Nimrod Carmon, Auteur ; Eyal Ben-Dor, Auteur Année de publication : 2019 Article en page(s) : 15 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage dirigé
[Termes IGN] étalonnage de modèle
[Termes IGN] hydrocarbure
[Termes IGN] image aérienne
[Termes IGN] image hyperspectrale
[Termes IGN] image infrarouge
[Termes IGN] image proche infrarouge
[Termes IGN] Israël
[Termes IGN] Kappa de Cohen
[Termes IGN] pétrole
[Termes IGN] photo-interprétation
[Termes IGN] pollution des sols
[Termes IGN] réflectance du sol
[Termes IGN] spectroscopieRésumé : (auteur) One of the most ubiquitous and detrimental types of environmental contamination in the world is crude oil pollution. When released into either the aquatic or terrestrial environments, this pollution can negatively impact flora and fauna, as well as human health. Hence, a rapid and affordable spatial assessment of the pollution is favored to limit the spill’s effects. Using airborne hyperspectral remote sensing (HRS) for crude oil detection in terrestrial areas has been investigated in previous studies, which mainly relied on heavily oiled artificial samples. These studies and others based their methodologies on the premise that the spectral features of petroleum hydrocarbon (PHC) are clearly observable, which might not be true in all cases. In this study, we aimed at assessing the true potential of using HRS for terrestrial oil spill mapping in a real disaster site in southern Israel, where laboratory and controlled conditions do not apply. Using the AISA SPECIM Fenix1 K sensor, we collected airborne image of the study site and analyzed the data with advanced data mining techniques. Various challenges and limitations arose from the airborne HRS image being taken two and a half years after the crude oil had been released into the environment and exposed to the surface. Here, no spectral features of PHC were detectable in the spectrum, preventing the use of PHC indices and spectral methods developed by others. Nevertheless, by using standardization techniques, vicarious band selection, dimension reduction, multivariate calibration, and supervised machine-learning, we were able to successfully distinguish between contaminated pixels from non-contaminated ones. Classification accuracy metrics of overall accuracy, sensitivity, specificity, and Kappa yielded good results of 0.95, 0.95, 0.95 and 0.9, respectively, for cross-validation, and 0.93, 0.91, 0.94 and 0.85, for the validation dataset. Classified image and test scenes also showed strong agreement with an orthophoto image taken several days after the disaster, when the pollution was clearly visible. Thus, we conclude that HRS technology can detect PHC traces in an oil spill site, even under the most challenging conditions. Numéro de notice : A2019-475 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2019.101901 Date de publication en ligne : 22/06/2019 En ligne : https://doi.org/10.1016/j.jag.2019.101901 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93636
in International journal of applied Earth observation and geoinformation > vol 82 (October 2019) . - 15 p.[article]Retrieving soil surface roughness with the Hapke photometric model: Confrontation with the ground truth / Sébastien Labarre in Remote sensing of environment, vol 225 (May 2019)
PermalinkThe attenuation of retroreflective signatures on surface soils / Robyn A. Barbato in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 4 (April 2016)
PermalinkCorrection of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation / Dario Carrea in ISPRS Journal of photogrammetry and remote sensing, vol 113 (March 2016)
PermalinkThe application of ASTER imageries and mathematical evaluation method in detecting cyanobacteria in biological soil crust, Chadormalu area, Central Iran / A. Moghtaderi in Photo interprétation, European journal of applied remote sensing, vol 47 n° 2 - 3 (juin 2011)
Permalinkvol 49 n° 4 - April 2011 - Special issue on remote sensing and modeling of surface properties (Bulletin de IEEE Transactions on geoscience and remote sensing) / Geoscience and remote sensing society
PermalinkPhysical limitations on detecting tunnels using underground-focusing spotlight synthetic aperture radar / J. Martinez-Lorenzo in IEEE Transactions on geoscience and remote sensing, vol 49 n° 1 Tome 1 (January 2011)
PermalinkThe application of Advanced Space-Borne Thermal Emission and Reflection (ASTER) radiometer data in the detection of alteration paleocrater, Bafq region, central Iran / A. Moghtaderi in Photo interprétation, European journal of applied remote sensing, vol 45 n° 2 (juin 2009)
PermalinkICARE: A physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas / Sophie Lacherade in Meteorology and Atmospheric Physics, vol 102 n° 3-4 (December 2008)
PermalinkDevelopment of an inversion code, ICARE, able to extract urban areas ground reflectance / Sophie Lacherade (2007)
PermalinkOn the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance / F. Gao in IEEE Transactions on geoscience and remote sensing, vol 44 n° 8 (August 2006)
Permalink