Descripteur
Documents disponibles dans cette catégorie (37)



Etendre la recherche sur niveau(x) vers le bas
Coastal observation of sea surface tide and wave height using opportunity signal from Beidou GEO satellites: analysis and evaluation / Feng Wang in Journal of geodesy, vol 96 n° 4 (April 2022)
![]()
[article]
Titre : Coastal observation of sea surface tide and wave height using opportunity signal from Beidou GEO satellites: analysis and evaluation Type de document : Article/Communication Auteurs : Feng Wang, Auteur ; Dongkai Yang, Auteur ; Guodong Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Chine
[Termes IGN] données altimétriques
[Termes IGN] données marégraphiques
[Termes IGN] hauteurs de mer
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle géométrique
[Termes IGN] rapport signal sur bruit
[Termes IGN] récepteur GNSS
[Termes IGN] réflectométrie par GNSS
[Termes IGN] signal BeiDou
[Termes IGN] surface de la mer
[Termes IGN] vagueRésumé : (auteur) In this paper, the methods retrieving tide and SWH using reflected BeiDou GEO satellite signals are proposed, and a data-driven method is proposed to calibrate sea state bias of the retrieved tide. In addition, an estimator combining multi-satellite observation based on linear unbiased minimum variance (LUMV) is developed to improve the retrieved precision. The B1I signal experiments in Qingdao and Shenzhen show after calibrating sea state influence using the proposed method, the root-mean-square error (RMSE) could fall to 0.40 m from 0.45 m, and compared to the single-satellite observation, the multi-satellite observation based on the LUMV estimator could significantly reduce the RMSE of the retrieved tide to 0.16 m. Shenzhen experiment is also used to evaluate the performance of retrieving SWH and the determination coefficient of 0.60 is obtained. This paper also conducts Monte Carlo simulation and experiment to evaluate the altimetry and measuring SWH precision using reflected B3I signal. The simulated results when SNR is over 5 dB, incoherent averaging number is 10000, and the receiver bandwidth is over 45 MHz, the estimated precision of the delay can reach up ∼0.15 m, and the precision of the normalized area ranges from 0.2 to 0.3 m. The B3I experiment show that compared to B1I signal, when the reflected signal from individual satellite is used, the better precision with the RMSE of 0.25 can be obtained, and when combining the measurements from the three satellites using LUMV estimator, the RMSE reduces to 0.16 m. Further, the precision of 0.12 m can be obtained by calibrating the sea state influence. Numéro de notice : A2022-213 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01605-0 Date de publication en ligne : 06/03/2022 En ligne : https://doi.org/10.1007/s00190-022-01605-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100050
in Journal of geodesy > vol 96 n° 4 (April 2022) . - n° 17[article]GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet / Milad Asgarimehr in Remote sensing of environment, vol 269 (February 2022)
![]()
[article]
Titre : GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet Type de document : Article/Communication Auteurs : Milad Asgarimehr, Auteur ; Caroline Arnold, Auteur ; Tobias Weigel, Auteur ; Chris Ruf, Auteur ; Jens Wickert, Auteur Année de publication : 2022 Article en page(s) : n° 112801 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] apprentissage profond
[Termes IGN] modèle numérique
[Termes IGN] réflectométrie par GNSS
[Termes IGN] réseau neuronal convolutif
[Termes IGN] vent
[Termes IGN] vitesseRésumé : (auteur) GNSS Reflectometry (GNSS-R) is a novel remote sensing technique for the monitoring of geophysical parameters using reflected GNSS signals from the Earth's surface. Ocean wind speed monitoring is the main objective of the recently launched Cyclone GNSS (CyGNSS), a GNSS-R constellation of eight microsatellites, launched in late 2016. In this study, the capability of deep learning, especially, for an operational wind speed data derivation from the measured Delay-Doppler Maps (DDMs) is characterized. CyGNSSnet is based on convolutional layers for the feature extraction from bistatic radar cross section (BRCS) DDMs, along with fully connected layers for processing ancillary technical and higher-level input parameters. The best architecture is determined on a validation set and is evaluated over a completely blind dataset from a different time span than that of the training data to validate the generality of the model for operational usage. After a data quality control, CyGNSSnet results in an RMSE of 1.36 m/s leading to a significant improvement by 28% in comparison to the officially operational retrieval algorithm. The RMSE is the lowest among those seen in the literature for any conventional or machine learning-based algorithm. The benefits of the convolutional layers, the advantages and weaknesses of the model are discussed. CyGNSSnet offers efficient processing of GNSS-R measurements for high-quality global ocean winds. Numéro de notice : A2022-079 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.rse.2021.112801 Date de publication en ligne : 23/11/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112801 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99764
in Remote sensing of environment > vol 269 (February 2022) . - n° 112801[article]Python software to transform GPS SNR wave phases to volumetric water content / Angel Martín in GPS solutions, vol 26 n° 1 (January 2022)
![]()
[article]
Titre : Python software to transform GPS SNR wave phases to volumetric water content Type de document : Article/Communication Auteurs : Angel Martín, Auteur ; Ana Belén Anquela, Auteur ; Sara Ibáñez, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 7 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] humidité du sol
[Termes IGN] phase
[Termes IGN] Python (langage de programmation)
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflectométrie par GNSS
[Termes IGN] signal GPS
[Termes IGN] teneur en vapeur d'eauRésumé : (auteur) The global navigation satellite system interferometric reflectometry is often used to extract information about the environment surrounding the antenna. One of the most important applications is soil moisture monitoring. This manuscript presents the main ideas and implementation decisions needed to write the Python code to transform the derived phase of the interferometric GPS waves, obtained from signal-to-noise ratio data continuously observed during a period of several weeks (or months), to volumetric water content. The main goal of the manuscript is to share the software with the scientific community to help users in the GPS-IR computation. Numéro de notice : A2022-004 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-021-01190-3 Date de publication en ligne : 27/10/2021 En ligne : https://doi.org/10.1007/s10291-021-01190-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98919
in GPS solutions > vol 26 n° 1 (January 2022) . - n° 7[article]Improving soil moisture retrieval from GNSS-interferometric reflectometry: parameters optimization and data fusion via neural network / Yajie Shi in International Journal of Remote Sensing IJRS, vol 42 n° 23 (1-10 December 2021)
![]()
[article]
Titre : Improving soil moisture retrieval from GNSS-interferometric reflectometry: parameters optimization and data fusion via neural network Type de document : Article/Communication Auteurs : Yajie Shi, Auteur ; Chao Ren, Auteur ; Zhiheng Yan, Auteur ; Jianmin Lai, Auteur Année de publication : 2021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] fusion de données
[Termes IGN] humidité du sol
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réflectométrie par GNSS
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Soil moisture is a vital surface physical quantity in studying the earth’s ecology. It plays a crucial role in the hydrological cycle, crop yield estimation, and ecological monitoring. Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) technology inversion to obtain high accuracy soil moisture is a hot topic of current research. However, due to the limited available sites, it’s difficult to obtain an extensive and continuous range of soil moisture based on this technique. It is necessary to build algorithms for encryption based on known sites’ data, combined with the corresponding geographic environmental elements. This paper extracted the surface environmental factors affecting soil moisture using high-precision optical remote sensing images. The contribution of each surface environmental element to the soil moisture inversion was analysed using back propagation (BP) neural network optimized by the genetic algorithm (GA). Based on this, ten surface environmental elements (latitude and longitude information, precipitation, temperature, land cover type, normalized difference vegetation index (NDVI), elevation, slope, slope direction, and shading) were identified as critical factors, and a multi-data fusion soil moisture inversion model was constructed. The results showed that the constructed model could better describe the relationship between soil moisture and these elements, and the Pearson correlation coefficient R reached 0.8724, and the RMSE was 0.0346 cm3 cm−3. GNSS-IR technology provides an effective technical means for inversing soil moisture over a large area with high spatial and temporal resolution. Numéro de notice : A2021-786 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01431161.2021.1988186 Date de publication en ligne : 24/10/2021 En ligne : https://doi.org/10.1080/01431161.2021.1988186 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98972
in International Journal of Remote Sensing IJRS > vol 42 n° 23 (1-10 December 2021)[article]Ten years of Lake Taupō surface height estimates using the GNSS interferometric reflectometry / Lucas D. Holden in Journal of geodesy, vol 95 n° 7 (July 2021)
![]()
[article]
Titre : Ten years of Lake Taupō surface height estimates using the GNSS interferometric reflectometry Type de document : Article/Communication Auteurs : Lucas D. Holden, Auteur ; Kristine M. Larson, Auteur Année de publication : 2021 Article en page(s) : n° 74 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] altimétrie satellitaire par radar
[Termes IGN] lac
[Termes IGN] Nouvelle-Zélande
[Termes IGN] réflectométrie par GNSS
[Termes IGN] série temporelle
[Termes IGN] signal GNSS
[Termes IGN] station GNSSRésumé : (auteur) A continuously operating GNSS station within a lake interior is uncommon, but advantageous for testing the GNSS Interferometric Reflectometry (GNSS-IR) technique. In this research, GNSS-IR is used to estimate ten years of lake surface heights for Lake Taupō in New Zealand. This is achieved using data collected from station TGHO, approximately 4 km from the lake’s shoreline. Its reliability is assessed by comparisons with shoreline gauges and satellite radar altimetry lake surface heights. Relative RMS differences between the daily averaged lake gauge and GNSS-IR lake surface heights range from ± 0.027 to ± 0.028 m. Relative RMS differences between the satellite radar altimetry lake surface heights and the GNSS-IR lake surface heights are ± 0.069 m and ± 0.124 m. The results show that the GNSS-IR technique at Lake Taupō can provide reliable lake surface height estimates in a terrestrial reference frame. A new ground-based absolute satellite radar altimetry calibration/validation approach based on GNSS-IR is proposed and discussed. Numéro de notice : A2021-513 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01523-7 Date de publication en ligne : 18/06/2021 En ligne : https://doi.org/10.1007/s00190-021-01523-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97932
in Journal of geodesy > vol 95 n° 7 (July 2021) . - n° 74[article]SNR-based water height retrieval in rivers: Application to high amplitude asymmetric tides in the Garonne river / Pierre Zeiger in Remote sensing, vol 13 n° 9 (May-1 2021)
PermalinkPython software tools for GNSS interferometric reflectometry (GNSS-IR) / Angel Martín in GPS solutions, Vol 24 n° 4 (October 2020)
PermalinkRaytracing atmospheric delays in ground-based GNSS reflectometry / T. Nicolaidou in Journal of geodesy, vol 94 n° 8 (August 2020)
PermalinkReal-time sea-level monitoring using Kalman filtering of GNSS-R data / Joakim Strandberg in GPS solutions, vol 23 n° 3 (July 2019)
PermalinkParameter estimation with GNSS-reflectometry and GNSS synthetic aperture techniques / Miguel Angel Ribot Sanfelix (2018)
PermalinkStatistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval / Sajad Tabibi in IEEE Transactions on geoscience and remote sensing, vol 55 n° 7 (July 2017)
PermalinkPermalinkTélédétection pour l'observation des surfaces continentales, Volume 2. Observation des surfaces continentales par télédétection micro-onde / Nicolas Baghdadi (2017)
PermalinkTélédétection pour l'observation des surfaces continentales, Volume 4. Observation des surfaces continentales par télédétection 2 / Nicolas Baghdadi (2017)
PermalinkWetland monitoring with Global Navigation Satellite System reflectometry / Son V. Nghiem in Earth and space science, vol 4 n° 1 (January 2017)
Permalink