Descripteur
Termes descripteurs IGN > mathématiques > analyse numérique > interpolation > interpolation spatiale > régression géographiquement pondérée
régression géographiquement pondéréeVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
![]()
[article]
Titre : Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation Type de document : Article/Communication Auteurs : George Grekousis, Auteur Année de publication : 2021 Article en page(s) : pp 152 - 174 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] données démographiques
[Termes descripteurs IGN] New York (Etats-Unis ; ville)
[Termes descripteurs IGN] optimisation par essaim de particules
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] voisinage (topologie)Résumé : (auteur) Fuzzy geographically weighted clustering has been proposed as an approach for improving fuzzy c-means algorithm when applied to geodemographic analysis. This clustering method allows a spatial entity to belong to more than one cluster with varying degrees, namely, membership values. Although fuzzy geographically weighted clustering attempts to create geographically aware clusters, it partially fails to trace spatial dependence and heterogeneity because, as a global metric, the membership values are calculated across the entire set of spatial entities. Here we introduce the first local version of fuzzy geographically weighted clustering, ‘local fuzzy geographically weighted clustering.’ In local fuzzy geographically weighted clustering, the membership values of a spatial entity are updated only according to the membership values of the spatial entities within its neighborhood and not across the entire set of entities, as originally proposed by the global metric. Additionally, we apply particle swarm optimization meta-heuristic to overcome the random initialization problem regarding the fuzzy c-means algorithm. To evaluate our method we compare local fuzzy geographically weighted clustering to global fuzzy geographically weighted clustering using a cancer incident benchmark dataset for Manhattan, New York. The results show that local fuzzy geographically weighted clustering outperforms the global version in all experimental settings. Numéro de notice : A2021-022 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808221 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808221 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96525
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 152 - 174[article]Computational improvements to multi-scale geographically weighted regressio / Ziqi Li in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
![]()
[article]
Titre : Computational improvements to multi-scale geographically weighted regressio Type de document : Article/Communication Auteurs : Ziqi Li, Auteur ; A. Stewart Fotheringham, Auteur Année de publication : 2020 Article en page(s) : pp 1378 - 1397 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse géovisuelle
[Termes descripteurs IGN] analyse multiéchelle
[Termes descripteurs IGN] implémentation (informatique)
[Termes descripteurs IGN] modélisation spatio-temporelle
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] traitement parallèleRésumé : (auteur) Geographically Weighted Regression (GWR) has been broadly used in various fields to model spatially non-stationary relationships. Multi-scale Geographically Weighted Regression (MGWR) is a recent advancement to the classic GWR model. MGWR is superior in capturing multi-scale processes over the traditional single-scale GWR model by using different bandwidths for each covariate. However, the multiscale property of MGWR brings additional computation costs. The calibration process of MGWR involves iterative back-fitting under the additive model (AM) framework. Currently, MGWR can only be applied on small datasets within a tolerable time and is prohibitively time-consuming to run with moderately large datasets (greater than 5,000 observations). In this paper, we propose a parallel implementation that has crucial computational improvements to the MGWR calibration. This improved computational method reduces both memory footprint and runtime to allow MGWR modelling to be applied to moderate-to-large datasets (up to 100,000 observations). These improvements are integrated into the mgwr python package and the MGWR 2.0 software, both of which are freely available to download. Numéro de notice : A2020-305 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1720692 date de publication en ligne : 06/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1720692 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95147
in International journal of geographical information science IJGIS > vol 34 n° 7 (July 2020) . - pp 1378 - 1397[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020071 SL Revue Centre de documentation Revues en salle Disponible Spatiotemporally Varying Coefficients (STVC) model: a Bayesian local regression to detect spatial and temporal nonstationarity in variables relationships / Chao Song in Annals of GIS, vol 26 n° 3 (July 2020)
![]()
[article]
Titre : Spatiotemporally Varying Coefficients (STVC) model: a Bayesian local regression to detect spatial and temporal nonstationarity in variables relationships Type de document : Article/Communication Auteurs : Chao Song, Auteur ; Xun Shi, Auteur ; Jinfeng Wang, Auteur Année de publication : 2020 Article en page(s) : pp 277 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] géostatistique
[Termes descripteurs IGN] modélisation spatio-temporelle
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] série temporelleRésumé : (auteur) Local regression has an advantage over global regression by allowing coefficients that qualify variables relationships being heterogeneous, where such varying regression relationships are nonstationarity. Spatiotemporally Varying Coefficients (STVC) model is the first Bayesian-based local spatiotemporal regression approach, intending to simultaneously detect spatial and temporal nonstationarity for heterogeneous response-covariate variables relationships, through separately estimating posterior local-scale coefficients over different space areas and time frames. In this paper, we first presented a general Bayesian STVC modelling paradigm as a specification guide to show its commonality in broader geospatial research. Then, we employed it to solve a real-world issue concerning spatiotemporal healthcare-socioeconomic relations, for which we derived data of county-level hospital beds number per capita, as well as data of related socioeconomic factors in northeast China during 2002–2011. Results showed that the STVC model surpassed all the other comparative regressions, in terms of both Bayesian model fitness and predictive ability. Globally, resident savings, financial institutions loans, GDP, and primary industry were identified as key socioeconomic conditions affecting healthcare resources in Northeast China. Temporally, with Time-Coefficients (TC) plots, we found that after 2011, GDP and primary industry would further help improve the overall healthcare level of northeast China. Spatially, with Space-Coefficients (SC) maps, we could directly identify the relative contribution of four socioeconomic covariates’ impacts on healthcare within each administrative county. Bayesian STVC model is an essential development and extension of the local regression family for exploring the spatiotemporal heterogeneous variables relationships, especially under Bayesian statistics, as well as GIScience and spatial statistics. Numéro de notice : A2020-582 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1782469 date de publication en ligne : 08/08/2020 En ligne : https://doi.org/10.1080/19475683.2020.1782469 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95904
in Annals of GIS > vol 26 n° 3 (July 2020) . - pp 277 - 291[article]Fine-scale dasymetric population mapping with mobile phone and building use data based on grid Voronoi method / Zhenzhong Peng in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
![]()
[article]
Titre : Fine-scale dasymetric population mapping with mobile phone and building use data based on grid Voronoi method Type de document : Article/Communication Auteurs : Zhenzhong Peng, Auteur ; Ru Wang, Auteur ; Lingbo Liu, Auteur ; Hao Wu, Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] bati
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] diagramme de Voronoï
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données démographiques
[Termes descripteurs IGN] espace urbain
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] petite échelle
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] téléphone intelligentRésumé : (auteur) Fine-scale population mapping is of great significance for capturing the spatial and temporal distribution of the urban population. Compared with traditional census data, population data obtained from mobile phone data has high availability and high real-time performance. However, the spatial distribution of base stations is uneven, and the service boundaries remain uncertain, which brings significant challenges to the accuracy of dasymetric population mapping. This paper proposes a Grid Voronoi method to provide reliable spatial boundaries for base stations and to build a subsequent regression based on mobile phone and building use data. The results show that the Grid Voronoi method gives high fitness in building use regression, and further comparison between the traditional ordinary least squares (OLS) regression model and geographically weighted regression (GWR) model indicates that the building use data can well reflect the heterogeneity of urban geographic space. This method provides a relatively convenient and reliable idea for capturing high-precision population distribution, based on mobile phone and building use data. Numéro de notice : A2020-315 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9060344 date de publication en ligne : 26/05/2020 En ligne : https://doi.org/10.3390/ijgi9060344 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95170
in ISPRS International journal of geo-information > vol 9 n° 6 (June 2020) . - 16 p.[article]Modelling housing rents using spatial autoregressive geographically weighted regression: a case study in cracow, Poland / Mateusz Tomal in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
![]()
[article]
Titre : Modelling housing rents using spatial autoregressive geographically weighted regression: a case study in cracow, Poland Type de document : Article/Communication Auteurs : Mateusz Tomal, Auteur Année de publication : 2020 Article en page(s) : 20 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] autorégression
[Termes descripteurs IGN] bien immobilier
[Termes descripteurs IGN] Cracovie (Pologne)
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] économétrie
[Termes descripteurs IGN] évaluation foncière
[Termes descripteurs IGN] gestion foncière
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] méthode de Monte-Carlo
[Termes descripteurs IGN] méthode des moindres carrés
[Termes descripteurs IGN] régression géographiquement pondéréeRésumé : (auteur) The proportion of tenants will undoubtedly rise in Poland, where at present, the ownership housing model is very dominant. As a result, the rental housing market in Poland is currently under-researched in comparison with owner-occupancy. In order to narrow this research gap, this study attempts to identify the determinants affecting rental prices in Cracow. The latter were obtained from the internet platform otodom.pl using the web scraping technique. To identify rent determinants, ordinary least squares (OLS) regression and spatial econometric methods were used. In particular, traditional spatial autoregressive model (SAR) and spatial autoregressive geographically weighted regression (GWR-SAR) were employed, which made it possible to take into account the spatial heterogeneity of the parameters of determinants and the spatially changing spatial autocorrelation of housing rents. In-depth analysis of rent determinants using the GWR-SAR model exposed the complexity of the rental market in Cracow. Estimates of the above model revealed that many local markets can be identified in Cracow, with different factors shaping housing rents. However, one can identify some determinants that are ubiquitous for almost the entire city. This concerns mainly the variables describing the area of the flat and the age of the building. Moreover, the Monte Carlo test indicated that the spatial autoregressive parameter also changes significantly over space. Numéro de notice : A2020-314 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9060346 date de publication en ligne : 26/05/2020 En ligne : https://doi.org/10.3390/ijgi9060346 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95169
in ISPRS International journal of geo-information > vol 9 n° 6 (June 2020) . - 20 p.[article]GIS-based modeling for selection of dam sites in the Kurdistan region, Iraq / Arsalan Ahmed Othman in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
PermalinkUnderstanding demographic and socioeconomic biases of geotagged Twitter users at the county level / Jiang Juqin in Cartography and Geographic Information Science, vol 46 n° 3 (May 2019)
PermalinkTemporal and spatial high-resolution climate data from 1961 to 2100 for the German National Forest Inventory (NFI) / Helge Dietrich in Annals of Forest Science [en ligne], vol 76 n° 1 (March 2019)
PermalinkEstimation of forest above-ground biomass by geographically weighted regression and machine learning with Sentinel imagery / Lin Chen in Forests, vol 9 n° 10 (October 2018)
PermalinkA two-stage estimation method with bootstrap inference for semi-parametric geographically weighted generalized linear models / Dengkui Li in International journal of geographical information science IJGIS, vol 32 n° 9-10 (September - October 2018)
PermalinkPermalinkGeographically weighted regression with parameter-specific distance metrics / Binbin Lu in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
PermalinkA bootstrap test for constant coefficients in geographically weighted regression models / Chang-Lin Mei in International journal of geographical information science IJGIS, vol 30 n° 7- 8 (July - August 2016)
PermalinkGeographically weighted evidence combination approaches for combining discordant and inconsistent volunteered geographical information / Alexis Comber in Geoinformatica [en ligne], vol 20 n° 3 (July - September 2016)
PermalinkThe Minkowski approach for choosing the distance metric in geographically weighted regression / B. Lu in International journal of geographical information science IJGIS, vol 30 n° 1-2 (January - February 2016)
Permalink