Descripteur
Documents disponibles dans cette catégorie (43)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Assessing road accidents in spatial context via statistical and non-statistical approaches to detect road accident hotspot using GIS / Yegane Khosravi in Geodetski vestnik, vol 66 n° 3 (September - November 2022)
[article]
Titre : Assessing road accidents in spatial context via statistical and non-statistical approaches to detect road accident hotspot using GIS Type de document : Article/Communication Auteurs : Yegane Khosravi, Auteur ; Farhad Hosseinali, Auteur ; Mostafa Adresi, Auteur Année de publication : 2022 Article en page(s) : pp 412 - 431 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accident de la route
[Termes IGN] analyse de groupement
[Termes IGN] autocorrélation spatiale
[Termes IGN] classification par nuées dynamiques
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] distance de Manhattan
[Termes IGN] estimation par noyau
[Termes IGN] Iran
[Termes IGN] méthode statistique
[Termes IGN] pente
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] regroupement de données
[Termes IGN] système d'information géographiqueRésumé : (auteur) Road accidents are among the most critical causes of fatality, personal injuries, and financial damage worldwide. Identifying accident hotspots and the causes of accidents and improving the condition of these hotspots is an economical way to improve road traffic safety. In this study, to identify the accident hotspots of “Dehbala” road located in Yazd province-Iran, statistical and non-statistical clustering methods were used. First, the weighting of the criteria was performed by an expert using the AHP method. Hence, the spatial correlation of slope and curvature was calculated by Global Moran’I. Anselin Local Moran index and Getis-Ord Gi* and Kernel Density Estimation were used to identify accident hotspots based on accident location due to the density of points. As a result, four accident hotspots were obtained by the Anselin Local Moran index, three accident hotspots by Getis-Ord Gi*and one accident-prone area were obtained by Kernel Density Estimation method. Three algorithms, k-means, k-medoids, and DBSCAN, were used to identify accident-prone areas or points using non-statistical methods. The dense cluster of each method was considered as an accident-prone cluster. Then the results of statistical and non- statistical methods were intersected with each other and the final accident-prone area was obtained. This study revealed the effect of geometric charcateristics of the road (slope and curvature) on the occurance of accidents. Numéro de notice : A2022-781 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.15292/geodetski-vestnik.2022.03.412-431 Date de publication en ligne : 04/08/2022 En ligne : https://doi.org/10.15292/geodetski-vestnik.2022.03.412-431 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101864
in Geodetski vestnik > vol 66 n° 3 (September - November 2022) . - pp 412 - 431[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 139-2022031 RAB Revue Centre de documentation En réserve L003 Disponible Spatial biodiversity modeling using high-performance computing cluster: A case study to access biological richness in Indian landscape / Hariom Singh in Geocarto international, vol 36 n° 18 ([01/10/2021])
[article]
Titre : Spatial biodiversity modeling using high-performance computing cluster: A case study to access biological richness in Indian landscape Type de document : Article/Communication Auteurs : Hariom Singh, Auteur ; R.D. Garg, Auteur ; Harish Chandra Karnatak, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2023 - 2043 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] autocorrélation spatiale
[Termes IGN] biodiversité
[Termes IGN] coefficient de corrélation
[Termes IGN] distribution spatiale
[Termes IGN] Inde
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] regroupement de données
[Termes IGN] relevé phytosociologique
[Termes IGN] SIG participatifRésumé : (auteur) The parallel processing and distributed GIServices provide an efficient approach to address the geocomputation challenges in biodiversity modeling. Using the widely applied Spatial Biodiversity Model (SBM) as an illustration, this study demonstrates parallelization of the spatial landscape algorithms based on Message Passing Interface (MPI) in cluster computing. The geocomputation based on MPI is performed to characterize the spatial distribution of Biological Richness (BR) for Indian landscape using developed high-performance cluster computing-based model named as SBM-HPC. In performance analysis, the execution time is reduced by 56.42%–81.41% (or the speedups of 2.29–5.38) using the parallel and cluster computing environment. Also, the spatial landscape algorithms of the model are extended to integrate large-scale geodata from online map services archives using distributed GIServices. To validate BR map, the phytosociological data is collected using participatory GIS approach. Furthermore, regression analysis between derived BR map and Shannon-Wiener index (Hˈ) represents high correlation coefficient R2 values.
Highlights :
- Development of spatial biodiversity model using parallel computing on the cluster.
- Geocomputation of spatial landscape indices using large-scale geospatial datasets.
- Distributed GIService integration in model to compute distributed data archives.
- Prediction of biological richness pattern and validation using participatory GIS.
- Characterize correlations between biological richness and bioclimatic patterns.Numéro de notice : A2021-763 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1678679 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1080/10106049.2019.1678679 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98798
in Geocarto international > vol 36 n° 18 [01/10/2021] . - pp 2023 - 2043[article]Pattern-based identification and mapping of landscape types using multi-thematic data / Jakub Nowosad in International journal of geographical information science IJGIS, vol 35 n° 8 (August 2021)
[article]
Titre : Pattern-based identification and mapping of landscape types using multi-thematic data Type de document : Article/Communication Auteurs : Jakub Nowosad, Auteur ; Tomasz F. Stepinski, Auteur Année de publication : 2021 Article en page(s) : pp 1634 - 1649 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] gestion des ressources
[Termes IGN] gestion foncière
[Termes IGN] matrice de co-occurrence
[Termes IGN] modèle mathématique
[Termes IGN] modélisation spatiale
[Termes IGN] occupation du sol
[Termes IGN] paysage
[Termes IGN] régionalisation (segmentation)
[Termes IGN] regroupement de données
[Termes IGN] segmentation en régionsRésumé : (auteur) Categorical maps of landscape types (LTs) are useful abstractions that simplify spatial and thematic complexity of natural landscapes, thus facilitating land resources management. A local landscape arises from a fusion of patterns of natural themes (such as land cover, landforms, etc.), which makes an unsupervised identification and mapping of LTs difficult. This paper introduces the integrated co-occurrence matrix (INCOMA) – a signature for numerical representation of multi-thematic categorical patterns. INCOMA enables an unsupervised identification and mapping of LTs. The region is tessellated into a large number of local landscapes – patterns of themes over small square-shaped neighborhoods. With local landscapes represented by INCOMA signatures and with dissimilarities between local landscapes calculated using the Jensen-Shannon Divergence (JSD), LTs can be identified and mapped using standard clustering or segmentation techniques. Resultant LTs are typically heterogeneous with respect to categories of contributing themes reflecting the human perception of a landscape. LTs calculated by INCOMA are more faithful abstractions of actual landscapes than LTs obtained by the current method of choice – the map overlay. The concept of INCOMA is described, and its application is demonstrated by an unsupervised mapping of LT zones in Europe based on combined patterns of land cover and landforms. Numéro de notice : A2021-549 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1893324 Date de publication en ligne : 02/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1893324 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98064
in International journal of geographical information science IJGIS > vol 35 n° 8 (August 2021) . - pp 1634 - 1649[article]Performance evaluation of artificial neural networks for natural terrain classification / Perpetual Hope Akwensi in Applied geomatics, vol 13 n° 1 (May 2021)
[article]
Titre : Performance evaluation of artificial neural networks for natural terrain classification Type de document : Article/Communication Auteurs : Perpetual Hope Akwensi, Auteur ; Eric Thompson Brantson, Auteur ; Johanna Ngula Niipele, Auteur ; et al., Auteur Année de publication : 2021 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Afrique occidentale
[Termes IGN] classification par nuées dynamiques
[Termes IGN] échantillonnage
[Termes IGN] fonction de base radiale
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] inventaire de la végétation
[Termes IGN] réalité de terrain
[Termes IGN] regroupement de données
[Termes IGN] réseau neuronal artificiel
[Termes IGN] segmentation d'imageRésumé : (auteur) Remotely sensed image segmentation and classification form a very important part of remote sensing which involves geo-data processing and analysis. Artificial neural networks (ANNs) are powerful machine learning approaches that have been successfully implemented in numerous fields of study. There exist many kinds of neural networks and there is no single efficient approach for resolving all geospatial problems. Therefore, this research aims at investigating and evaluating the efficiency of three ANN approaches, namely, backpropagation neural network (BPNN), radial basis function neural network (RBFNN), and Elman backpropagation recurrent neural network (EBPRNN) using multi-spectral satellite images for terrain feature classification. Additionally, there has been close to no application of EBPRNN in modeling multi-spectral satellite images even though they also contain patterns. The efficiency of the three tested approaches is presented using the kappa coefficient, user’s accuracy, producer’s accuracy, overall accuracy, classification error, and computational simulation time. The study demonstrated that all the three ANN models achieved the aim of pattern identification, segmentation, and classification. This paper also discusses the observations of increasing sample sizes as inputs in the various ANN models. It was concluded that RBFNN’s computational time increases with increasing sample size and consequently increasing the number of hidden neurons; BPNN on overall attained the highest accuracy compared to the other models; EBPRNN’s accuracy increases with increasing sample size, hence a promising and perhaps an alternative choice to BPNN and RBFNN if very large datasets are involved. Based on the performance metrics used in this study, BPNN is the best model out of the three evaluated ANN models. Numéro de notice : A2021-223 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-021-00360-9 Date de publication en ligne : 13/02/2021 En ligne : https://doi.org/10.1007/s12518-021-00360-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97194
in Applied geomatics > vol 13 n° 1 (May 2021)[article]Robust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
[article]
Titre : Robust unsupervised small area change detection from SAR imagery using deep learning Type de document : Article/Communication Auteurs : Xinzheng Zhang, Auteur ; Hang Su, Auteur ; Ce Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] échantillonnage
[Termes IGN] filtre de déchatoiement
[Termes IGN] image radar moirée
[Termes IGN] ondelette
[Termes IGN] regroupement de données
[Termes IGN] superpixelRésumé : (auteur) Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection. Numéro de notice : A2021-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.004 Date de publication en ligne : 17/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96879
in ISPRS Journal of photogrammetry and remote sensing > vol 173 (March 2021) . - pp 79 - 94[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021031 SL Revue Centre de documentation Revues en salle Disponible 081-2021033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Characterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale / Chen Yang in Geo-spatial Information Science, vol 23 n° 4 (December 2020)PermalinkUsing multi-agent simulation to predict natural crossing points for pedestrians and choose locations for mid-block crosswalks / Egor Smirrnov in Geo-spatial Information Science, vol 23 n° 4 (December 2020)PermalinkAn overview of clustering methods for geo-referenced time series: from one-way clustering to co- and tri-clustering / Xiaojing Wu in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)PermalinkHyperspectral image clustering with Albedo recovery Fuzzy C-Means / Peyman Azimpour in International Journal of Remote Sensing IJRS, vol 41 n° 16 (01-10 May 2020)PermalinkA framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data / Sheng Hu in Computers, Environment and Urban Systems, vol 80 (March 2020)PermalinkAn OD flow clustering method based on vector constraints: a case study for Beijing taxi origin-destination data / Xiaogang Guo in ISPRS International journal of geo-information, vol 9 n° 2 (February 2020)PermalinkPré-localisation des données pour la modélisation 3D de tunnels : développements et évaluations / Christophe Heinkelé in Revue Française de Photogrammétrie et de Télédétection, n° 221 (novembre 2019)PermalinkA reliable traffic prediction approach for bike‐sharing system by exploiting rich information with temporal link prediction strategy / Yan Zhou in Transactions in GIS, Vol 23 n° 5 (October 2019)PermalinkA framework for connecting two interoperability universes: OGC Web Feature Services and Linked Data / Luis Vilches-Blazquez in Transactions in GIS, vol 23 n° 1 (February 2019)PermalinkProgressive amalgamation of building clusters for map generalization based on scaling subgroups / Xianjin He in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)Permalink