Descripteur



Etendre la recherche sur niveau(x) vers le bas
Characterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale / Chen Yang in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
![]()
[article]
Titre : Characterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale Type de document : Article/Communication Auteurs : Chen Yang, Auteur ; Qingming Zhan, Auteur ; Sihang Gao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 327 - 340 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] climat urbain
[Termes descripteurs IGN] géomorphologie locale
[Termes descripteurs IGN] ilot thermique urbain
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image Terra-MODIS
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] morphologie urbaine
[Termes descripteurs IGN] processus gaussien
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] température au sol
[Termes descripteurs IGN] Wuhan (Chine)
[Termes descripteurs IGN] zonage (urbanisme)Résumé : (auteur) Land Surface Temperature (LST) derived from space-borne Thermal-infrared (TIR) sensors is a key parameter of urban climate studies. Current studies are inefficient to capture the spatial and temporal variations of LST for only one snapshot adopted at one time. Focusing on the characterization of the spatial and temporal of LST variations at local scales, the latent patterns, and morphological characteristics are extracted in this study. Technically, sixteen MODerate-resolution Imaging Spectroradiometer (MODIS) eight-day synthesized LST products (MYD11A2) in 2002, 2007, 2012, and 2017 are employed. First, the non-parametric Multi-Task Gaussian Process Model (MTGP) is used to extract the smooth and continuous Latent LST (LLST) patterns using one LST subset and its temporally adjacent images. Second, the Multi-Scale Shape Index (MSSI) is then applied to quantify the morphological characteristics at the optimal scale. Then, the LLST patterns and MSSI maps are clustered into multiple spatial categories. The specific clusters with the highest LLST and MSSI values are considered as local LLST hotspots. The Hotspots Weighted Mean Center (HSWMC) and standard deviation ellipse are adopted to further investigate the spatiotemporal change of hotspots orientation, direction, and trajectories. Results revealed that Impervious Surfaces (IS) composition is the most significant external forcing of local LST anomalies. The configuration factors (e.g., shape index, aggregation index) also have a noticeable local warming effect. This study represents a latent pattern and morphology-based framework for LST hotspots spatial and temporal variations characterization, catering to the zoning and grading strategies in urban planning. Numéro de notice : A2020-788 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2020.1834882 date de publication en ligne : 06/11/2020 En ligne : https://doi.org/10.1080/10095020.2020.1834882 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96550
in Geo-spatial Information Science > vol 23 n° 4 (December 2020) . - pp 327 - 340[article]Using multi-agent simulation to predict natural crossing points for pedestrians and choose locations for mid-block crosswalks / Egor Smirrnov in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
![]()
[article]
Titre : Using multi-agent simulation to predict natural crossing points for pedestrians and choose locations for mid-block crosswalks Type de document : Article/Communication Auteurs : Egor Smirrnov, Auteur ; Sergei Dunaenko, Auteur ; Sergei Kudinov, Auteur Année de publication : 2020 Article en page(s) : pp 362 - 374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] itinéraire piétionnier
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] navigation pédestre
[Termes descripteurs IGN] optimisation par colonie de fourmis
[Termes descripteurs IGN] piéton
[Termes descripteurs IGN] plan de déplacement urbain
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] sécurité routière
[Termes descripteurs IGN] système multi-agents
[Termes descripteurs IGN] urbanismeRésumé : (auteur) When arranging the pedestrian infrastructure, one of the most important components that make a tangible contribution to the safety of pedestrians is to organize the safe road crossing. In cities, pedestrians often cross a road in the wrong place due to established routes or inadequate location of crosswalks. Accidents with the participation of pedestrians who crossed the road neglecting the traffic rules, make up a significant part of the total amount of road accidents. In this paper, we propose a method that allows us, on the basis of the results of a computer simulation of pedestrian traffic, to obtain predicted routes for road crossing and to indicate optimal locations for crosswalks that take into account established pedestrian routes and increase their safety. The work describes an extension for the existing AntRoadPlanner simulation algorithm, which searches for and clusters points where pedestrians cross the roadway and suggests locations for new crosswalks. This method was tested on the basis of a comparative simulation of several territories before and after its application, as well as on the basis of a field study of the territories. The developed algorithm can also be used to search for other potentially dangerous places for pedestrians on plans of districts, for example, crossings in places with limited visibility. Numéro de notice : A2020-789 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2020.1847003 date de publication en ligne : 16/11/2020 En ligne : https://doi.org/10.1080/10095020.2020.1847003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96551
in Geo-spatial Information Science > vol 23 n° 4 (December 2020) . - pp 362 - 374[article]An overview of clustering methods for geo-referenced time series: from one-way clustering to co- and tri-clustering / Xiaojing Wu in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
![]()
[article]
Titre : An overview of clustering methods for geo-referenced time series: from one-way clustering to co- and tri-clustering Type de document : Article/Communication Auteurs : Xiaojing Wu, Auteur ; Changxiu Cheng, Auteur ; Raul Zurita-Milla, Auteur Année de publication : 2020 Article en page(s) : pp 1822 - 1848 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification par nuées dynamiques
[Termes descripteurs IGN] exploration de données
[Termes descripteurs IGN] géoréférencement
[Termes descripteurs IGN] modélisation spatio-temporelle
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] taxinomieRésumé : (auteur) Even though many studies have shown the usefulness of clustering for the exploration of spatio-temporal patterns, until now there is no systematic description of clustering methods for geo-referenced time series (GTS) classified as one-way clustering, co-clustering and tri-clustering methods. Moreover, the selection of a suitable clustering method for a given dataset and task remains to be a challenge. Therefore, we present an overview of existing clustering methods for GTS, using the aforementioned classification, and compare different methods to provide suggestions for the selection of appropriate methods. For this purpose, we define a taxonomy of clustering-related geographical questions and compare the clustering methods by using representative algorithms and a case study dataset. Our results indicate that tri-clustering methods are more powerful in exploring complex patterns at the cost of additional computational effort, whereas one-way clustering and co-clustering methods yield less complex patterns and require less running time. However, the selection of the most suitable method should depend on the data type, research questions, computational complexity, and the availability of the methods. Finally, the described classification can include novel clustering methods, thereby enabling the exploration of more complex spatio-temporal patterns. Numéro de notice : A2020-477 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1726922 date de publication en ligne : 16/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1726922 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95624
in International journal of geographical information science IJGIS > vol 34 n° 9 (September 2020) . - pp 1822 - 1848[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020091 SL Revue Centre de documentation Revues en salle Disponible Hyperspectral image clustering with Albedo recovery Fuzzy C-Means / P. Azimpour in International Journal of Remote Sensing IJRS, vol 41 n°16 (01-10 May 2020)
![]()
[article]
Titre : Hyperspectral image clustering with Albedo recovery Fuzzy C-Means Type de document : Article/Communication Auteurs : P. Azimpour, Auteur ; R. Shad, Auteur ; M. Ghaemi, Auteur ; H. Etemadfard, Auteur Année de publication : 2020 Article en page(s) : pp 6117 - 6134 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] albedo
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] télédétectionRésumé : (auteur) Hyperspectral image clustering is usually used for unsupervised learning in different applications. However, the traditional clustering methods have not been considered the complex relationships among neighbouring pixels. The Albedo and Shading elements can define pixel values in the HyperSpectral Images (HSIs). In HSIs, features are different from each other because of their natural physical characteristics and the physical nature of different image features can be described by the Albedo element. Therefore, in this paper, we generate the natural Albedo feature of the HSIs by applying Albedo recovery step to exploit main information from HSIs. Then, we utilized the Fuzzy C-means clustering method to cluster the natural Albedo dataset. In this paper, we propose a novel accurate Albedo Recovery based Fuzzy C-Means (ARFCM) method to cluster HSIs. In the dataset, each feature vector is processed by the Albedo recovery step to create a new feature vector. This new feature vector can describe the dataset better than the original one. Comparing clustering methods as one of the powerful clustering algorithms are widely used in the remote sensing fields of studying. The experiments conducted on several benchmark datasets demonstrated that the proposed clustering method achieves higher performance than other methods and present the efficiency and effectiveness of the proposed method. The results of experiments over different HSI datasets indicated that the proposed method could produce reliable and suitable results compared to the other methods. This shows the robustness of the proposed ARFCM algorithm over the various HSI datasets. Other methods may provide a good response in a given dataset and do not perform well in the other data. Consequently, the ARFCM method, regardless of the study area characteristics and the sensor features, always renders remarkable clustering accuracy. Numéro de notice : A2020-453 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1736728 date de publication en ligne : 01/06/2020 En ligne : https://doi.org/10.1080/01431161.2020.1736728 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95542
in International Journal of Remote Sensing IJRS > vol 41 n°16 (01-10 May 2020) . - pp 6117 - 6134[article]A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data / Sheng Hu in Computers, Environment and Urban Systems, vol 80 (March 2020)
![]()
[article]
Titre : A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data Type de document : Article/Communication Auteurs : Sheng Hu, Auteur ; Zhanjun He, Auteur ; Liang Wu, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] espace urbain
[Termes descripteurs IGN] extraction de données
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] regroupement de données
[Termes descripteurs IGN] télédétection spatiale
[Termes descripteurs IGN] traitement du langage naturel
[Termes descripteurs IGN] Wuhan (Chine)
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Many studies are in an effort to explore urban spatial structure, and urban functional regions have become the subject of increasing attention among planners, engineers and public officials. Attempts have been made to identify urban functional regions using high spatial resolution (HSR) remote sensing images and extensive geo-data. However, the research scale and throughput have also been limited by the accessibility of HSR remote sensing data. Recently, big geo-data are becoming increasingly popular for urban studies since research is still accessible and objective with regard to the use of these data. This study aims to build a novel framework to provide an alternative solution for sensing urban spatial structure and discovering urban functional regions based on emerging geo-data – points of interest (POIs) data and an embedding learning method in the natural language processing (NLP) field. We started by constructing the intraurban functional corpus using a center-context pairs-based approach. A word embeddings representation model for training that corpus was used to extract multiprototype vectors in the second step, and the last step aggregated the functional parcels based on an introduced spatial clustering method, hierarchical density-based spatial clustering of applications with noise (HDBSCAN). The clustering results suggested that our proposed framework used in this study is capable of discovering the utilization of urban space with a reasonable level of accuracy. The limitation and potential improvement of the proposed framework are also discussed. Numéro de notice : A2020-191 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2019.101442 date de publication en ligne : 15/11/2019 En ligne : https://doi.org/10.1016/j.compenvurbsys.2019.101442 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94853
in Computers, Environment and Urban Systems > vol 80 (March 2020)[article]An OD flow clustering method based on vector constraints: a case study for Beijing taxi origin-destination data / Xiaogang Guo in ISPRS International journal of geo-information, vol 9 n° 2 (February 2020)
PermalinkPré-localisation des données pour la modélisation 3D de tunnels : développements et évaluations / Christophe Heinkelé in Revue Française de Photogrammétrie et de Télédétection, n° 221 (novembre 2019)
PermalinkA reliable traffic prediction approach for bike‐sharing system by exploiting rich information with temporal link prediction strategy / Yan Zhou in Transactions in GIS, Vol 23 n° 5 (October 2019)
PermalinkA framework for connecting two interoperability universes: OGC Web Feature Services and Linked Data / Luis Vilches-Blazquez in Transactions in GIS, vol 23 n° 1 (February 2019)
PermalinkProgressive amalgamation of building clusters for map generalization based on scaling subgroups / Xianjin He in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
PermalinkKnowledge-guided consistent correlation analysis of multimode landslide monitoring data / Shuangxi Miao in International journal of geographical information science IJGIS, vol 31 n° 11-12 (November - December 2017)
PermalinkA geometric correspondence feature based-mismatch removal in vision based-mapping and navigation / Zeyu Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 10 (October 2017)
Permalink3D building roof reconstruction from airborne LiDAR point clouds : a framework based on a spatial database / Rujun Cao in International journal of geographical information science IJGIS, vol 31 n° 7-8 (July - August 2017)
PermalinkGraph mapping: Multi-scale community visualization of massive graph data / David Jonker in Information visualization, vol 16 n° 3 (July 2017)
PermalinkEvaluating data stability in aggregation structures across spatial scales: revisiting the modifiable areal unit problem / Jonathan K. Nelson in Cartography and Geographic Information Science, Vol 44 n° 1 (January 2017)
Permalink