Descripteur
Documents disponibles dans cette catégorie (3)



Etendre la recherche sur niveau(x) vers le bas
A representativeness-directed approach to mitigate spatial bias in VGI for the predictive mapping of geographic phenomena / Guiming Zhang in International journal of geographical information science IJGIS, vol 33 n° 9 (September 2019)
![]()
[article]
Titre : A representativeness-directed approach to mitigate spatial bias in VGI for the predictive mapping of geographic phenomena Type de document : Article/Communication Auteurs : Guiming Zhang, Auteur ; A - Xing Zhu, Auteur Année de publication : 2019 Article en page(s) : pp 1873 - 1893 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Aves
[Termes IGN] carte thématique
[Termes IGN] distribution spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] échantillon
[Termes IGN] erreur d'échantillon
[Termes IGN] erreur de positionnement
[Termes IGN] erreur systématique
[Termes IGN] habitat (nature)
[Termes IGN] modèle de simulation
[Termes IGN] phénomène géographique
[Termes IGN] pondération
[Termes IGN] précision de localisation
[Termes IGN] régression logistique
[Termes IGN] representativité
[Termes IGN] science citoyenne
[Termes IGN] Wisconsin (Etats-Unis)Résumé : (auteur) Volunteered geographic information (VGI) contains valuable field observations that represent the spatial distribution of geographic phenomena. As such, it has the potential to provide regularly updated low-cost field samples for predictively mapping the spatial variations of geographic phenomena. The predictive mapping of geographic phenomena often requires representative samples for high mapping accuracy, but samples consisting of VGI observations are often not representative as they concentrate on specific geographic areas (i.e. spatial bias) due to the opportunistic nature of voluntary observation efforts. In this article, we propose a representativeness-directed approach to mitigate spatial bias in VGI for predictive mapping. The proposed approach defines and quantifies sample representativeness by comparing the probability distributions of sample locations and the mapping area in the environmental covariate space. Spatial bias is mitigated by weighting the sample locations to maximize their representativeness. The approach is evaluated using species habit suitability mapping as a case study. The results show that the accuracy of predictive mapping using weighted sample locations is higher than using unweighted sample locations. A positive relationship between sample representativeness and mapping accuracy is also observed, suggesting that sample representativeness is a valid indicator of predictive mapping accuracy. This approach mitigates spatial bias in VGI to improve predictive mapping accuracy. Numéro de notice : A2019-392 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1615071 Date de publication en ligne : 10/05/2019 En ligne : https://doi.org/10.1080/13658816.2019.1615071 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93490
in International journal of geographical information science IJGIS > vol 33 n° 9 (September 2019) . - pp 1873 - 1893[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 079-2019091 RAB Revue Centre de documentation En réserve 3L Disponible 079-2019092 RAB Revue Centre de documentation En réserve 3L Disponible Bumps and bruises in the digital skins of cities: unevenly distributed user-generated content across US urban areas / Colin Robertson in Cartography and Geographic Information Science, Vol 43 n° 4 (September 2016)
![]()
[article]
Titre : Bumps and bruises in the digital skins of cities: unevenly distributed user-generated content across US urban areas Type de document : Article/Communication Auteurs : Colin Robertson, Auteur ; Robert Feick, Auteur Année de publication : 2016 Article en page(s) : pp 283 - 300 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse de données
[Termes IGN] Dallas (Texas)
[Termes IGN] données descriptives
[Termes IGN] données localisées des bénévoles
[Termes IGN] données socio-économiques
[Termes IGN] géobalise
[Termes IGN] image 2D
[Termes IGN] Nouvelle-Orléans (Louisiane)
[Termes IGN] qualité des données
[Termes IGN] représentation des données
[Termes IGN] representativité
[Termes IGN] Seattle (Washington)Résumé : (Auteur) As momentum and interest build to leverage new forms of user-generated content that contains geographical information, classical issues of data quality remain significant research challenges. In this article, we explore issues of representativeness for one form of user-generated content, geotagged photographs in US urban centers. Generalized linear models were developed to associate photograph distribution with underlying socioeconomic descriptors at the city-scale, and examine intra-city variation in relation to income inequality. We conclude our analyses with a detailed examination of Dallas, Seattle, and New Orleans. Our findings add to the growing volume of evidence outlining uneven representativeness in user-generated data, and our approach contributes to the stock of methods available to investigate geographic variations in representativeness. In addition to city-scale variables relating to distribution of user-generated content, variability remains at localized scales that demand an individual and contextual understanding of their form and nature. The findings demonstrate that careful analysis of representativeness at both macro and micro scales can simultaneously provide important insights into the processes giving rise to user-generated data sets and potentially shed light on their embedded biases and suitability as inputs to analysis. Numéro de notice : A2016-415 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2015.1088801 En ligne : https://doi.org/10.1080/15230406.2015.1088801 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81309
in Cartography and Geographic Information Science > Vol 43 n° 4 (September 2016) . - pp 283 - 300[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2016041 SL Revue Centre de documentation Revues en salle Disponible Assessing reference dataset representativeness through confidence metrics based on information density / Giorgos Mountrakis in ISPRS Journal of photogrammetry and remote sensing, vol 78 (April 2013)
![]()
[article]
Titre : Assessing reference dataset representativeness through confidence metrics based on information density Type de document : Article/Communication Auteurs : Giorgos Mountrakis, Auteur ; Bo Xi, Auteur Année de publication : 2013 Article en page(s) : pp 129 - 147 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de sensibilité
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte de confiance
[Termes IGN] classification dirigée
[Termes IGN] densité d'information
[Termes IGN] données localisées de référence
[Termes IGN] jeu de données localisées
[Termes IGN] representativitéRésumé : (Auteur) Land cover maps obtained from classification of remotely sensed imagery provide valuable information in numerous environmental monitoring and modeling tasks. However, many uncertainties and errors can directly or indirectly affect the quality of derived maps. This work focuses on one key aspect of the supervised classification process of remotely sensed imagery: the quality of the reference dataset used to develop a classifier. More specifically, the representative power of the reference dataset is assessed by contrasting it with the full dataset (e.g. entire image) needing classification. Our method is applicable in several ways: training or testing datasets (extracted from the reference dataset) can be compared with the full dataset. The proposed method moves beyond spatial sampling schemes (e.g. grid, cluster) and operates in the multidimensional feature space (e.g. spectral bands) and uses spatial statistics to compare information density of data to be classified with data used in the reference process. The working hypothesis is that higher information density, not in general but with respect to the entire classified image, expresses higher confidence in obtained results. Presented experiments establish a close link between confidence metrics and classification accuracy for a variety of image classifiers namely maximum likelihood, decision tree, Backpropagation Neural Network and Support Vector Machine. A sensitivity analysis demonstrates that spatially-continuous reference datasets (e.g. a square window) have the potential to provide similar classification confidence as typically-used spatially-random datasets. This is an important finding considering the higher acquisition costs for randomly distributed datasets. Furthermore, the method produces confidence maps that allow spatially-explicit comparison of confidence metrics within a given image for identification of over- and under-represented image portions. The current method is presented for individual image classification but, with sufficient evaluation from the remote sensing community it has the potential to become a standard for reference dataset reporting and thus allowing users to assess representativeness of reference datasets in a consistent manner across different classification tasks. Numéro de notice : A2013-183 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.01.011 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.01.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32321
in ISPRS Journal of photogrammetry and remote sensing > vol 78 (April 2013) . - pp 129 - 147[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2013041 RAB Revue Centre de documentation En réserve 3L Disponible