Descripteur
Termes IGN > mathématiques > statistique mathématique > probabilités > réseau bayesien
réseau bayesien |
Documents disponibles dans cette catégorie (14)



Etendre la recherche sur niveau(x) vers le bas
How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)
![]()
[article]
Titre : How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data Type de document : Article/Communication Auteurs : Rongfang Lyu, Auteur ; Jili Pang, Auteur ; Xiaolei Tian, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104287 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace vert
[Termes IGN] hauteur du bâti
[Termes IGN] ilot thermique urbain
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] optimisation (mathématiques)
[Termes IGN] paysage urbain
[Termes IGN] plan d'eau
[Termes IGN] planification urbaine
[Termes IGN] réseau bayesien
[Termes IGN] semis de points
[Termes IGN] température au solRésumé : (auteur) The systematical exploration of how two-dimensional (2D) and three-dimensional (3D) features of urban landscapes influence land surface temperature (LST) is still limited. Therefore, we investigated the influence of three main urban landscapes—urban green space, impervious land, and water bodies on LST, with a particular focus on the 3D vegetation metrics of green volume (GV) and leaf area index (LAI). We used Yinchuan City, China, as a case study. We quantified the impacts of various 2D/3D metrics of the three landscape types on LST using a random forest analysis with multiple sources, including Unmanned Aerial Vehicle (UAV) and remote sensing images. We then generated a Bayesian Network (BN) model to identify the optimal configurations for each landscape type. We found that using 11 of the 31 metrics considered, our model could explain 81.8% of the observed variance in LST of Yinchuan City. Among those, water body metrics were the most important, followed by vegetation abundance, impervious land metrics, and landscape pattern of urban green space. The mean classification error of the BN model was only 22.9%. We suggest that this makes the BN model a promising support tool for urban planning with a view to urban heat island mitigation. Our findings also stress the importance of considering both 2D and 3D features when considering urban cooling strategies. Numéro de notice : A2023-007 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.104287 Date de publication en ligne : 02/11/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104287 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102095
in Sustainable Cities and Society > vol 88 (January 2023) . - n° 104287[article]Integrating Bayesian networks to forecast sea-level rise impacts on barrier island characteristics and habitat availability / Benjamin T. Gutierrez in Earth and space science, vol 9 n° 11 (November 2022)
![]()
[article]
Titre : Integrating Bayesian networks to forecast sea-level rise impacts on barrier island characteristics and habitat availability Type de document : Article/Communication Auteurs : Benjamin T. Gutierrez, Auteur ; Sarah Zeigler, Auteur ; Erika Lentz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : 24 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] changement climatique
[Termes IGN] géomorphologie
[Termes IGN] habitat animal
[Termes IGN] île
[Termes IGN] modèle de simulation
[Termes IGN] montée du niveau de la mer
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] planification côtière
[Termes IGN] réseau bayesien
[Termes IGN] submersion marine
[Termes IGN] surveillance du littoral
[Termes IGN] trait de côteRésumé : (auteur) Evaluation of sea-level rise (SLR) impacts on coastal landforms and habitats is a persistent need for informing coastal planning and management, including policy decisions, particularly those that balance human interests and habitat protection throughout the coastal zone. Bayesian networks (BNs) are used to model barrier island change under different SLR scenarios that are relevant to management and policy decisions. BNs utilized here include a shoreline change model and two models of barrier island biogeomorphological evolution at different scales (50 and 5 m). These BNs were then linked to another BN to predict habitat availability for piping plovers (Charadrius melodus), a threatened shorebird reliant on beach habitats. We evaluated the performance of the two linked geomorphology BNs and further examined error rates by generating hindcasts of barrier island geomorphology and habitat availability for 2014 conditions. Geomorphology hindcasts revealed that model error declined with a greater number of known inputs, with error rates reaching 55% when multiple outputs were hindcast simultaneously. We also found that, although error in predictions of piping plover nest presence/absence increased when outputs from the geomorphology BNs were used as inputs in the piping plover habitat BN, the maximum error rate for piping plover habitat suitability in the fully-linked BNs was only 30%. Our findings suggest this approach may be useful for guiding scenario-based evaluations where known inputs can be used to constrain variables that produce higher uncertainty for morphological predictions. Overall, the approach demonstrates a way to assimilate data and model structures with uncertainty to produce forecasts to inform coastal planning and management. Numéro de notice : A2022-883 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1029/2022EA002286 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1029/2022EA002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102024
in Earth and space science > vol 9 n° 11 (November 2022) . - 24 p.[article]Towards sustainable forestry: Using a spatial Bayesian belief network to quantify trade-offs among forest-related ecosystem services / Catherine Frizzle in Journal of Environmental Management, vol 301 ([01/01/2022])
![]()
[article]
Titre : Towards sustainable forestry: Using a spatial Bayesian belief network to quantify trade-offs among forest-related ecosystem services Type de document : Article/Communication Auteurs : Catherine Frizzle, Auteur ; Richard A. Fournier, Auteur ; Melanie Trudel, Auteur ; Joan E. Luther, Auteur Année de publication : 2022 Article en page(s) : n° 113817 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] gestion forestière durable
[Termes IGN] réseau bayesien
[Termes IGN] service écosystémique
[Termes IGN] théorie de Dempster-Shafer
[Vedettes matières IGN] ForesterieRésumé : (auteur) Assessing trade-offs among ecosystem services (ESs) that are provided by forests is necessary to support decision-making and to minimize negative effects of timber harvesting. In this study, we examined how spatial data, forest operational rules, ESs, and probabilistic statistics can be combined into a practical tool for trade-off analysis that could guide decision-making towards sustainable forestry. Our main goal was to analyze trade-offs among the wood provisioning ES and other forest ESs at the landscape level using a Bayesian belief network (BBN). We used LiDAR data to derive four ES layers as inputs to a spatial BBN: (i) wood provisioning; (ii) erosion regulating; (iii) climate regulating; and (iv) habitat supporting. We quantified operational constraints with four forest operational rules (FOR) that were defined in terms of: (i) potential harvest block size; (ii) distance between a small potential harvest block and a larger harvest block; (iii) gross merchantable volume (GMV); and (iv) distance to an existing resource road. Maps of the most probable trade-off classes between the wood provisioning ES and other ESs enabled us to identify areas where timber harvesting should be avoided or where timber harvesting should have a very low negative effect on other ESs. Even with our most restrictive management scenario, the total GMV that could be harvested met the annual allowable cut (AAC) volume required to meet sustainable forestry objectives. Through our study, we demonstrated that high-resolution spatial data could be used to quantify trade-offs among wood provisioning ES and other forest-related ESs and to simulate small changes in ES indicators within the BBN. We also demonstrated the potential to evaluate management scenarios to reduce trade-offs by considering FOR as inputs to the BBN. Maps of the most probable trade-off classes among two or three ESs under operational constraints provide key information to guide forest management decision-making towards sustainable forestry. Numéro de notice : A2022-338 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1016/j.jenvman.2021.113817 Date de publication en ligne : 01/10/2021 En ligne : https://doi.org/10.1016/j.jenvman.2021.113817 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100709
in Journal of Environmental Management > vol 301 [01/01/2022] . - n° 113817[article]Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea / Sunmin Lee in Geocarto international, vol 35 n° 15 ([01/11/2020])
![]()
[article]
Titre : Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea Type de document : Article/Communication Auteurs : Sunmin Lee, Auteur ; Moung-Jin Lee, Auteur ; Hyung-Sup Jung, Auteur ; Saro Lee, Auteur Année de publication : 2020 Article en page(s) : pp 1665 - 1679 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] carte de la végétation
[Termes IGN] carte forestière
[Termes IGN] carte topographique
[Termes IGN] cartographie des risques
[Termes IGN] catastrophe naturelle
[Termes IGN] Corée du sud
[Termes IGN] effondrement de terrain
[Termes IGN] modèle stochastique
[Termes IGN] réseau bayesien
[Termes IGN] système d'information géographique
[Termes IGN] zone urbaineRésumé : (auteur) In recent years, machine learning techniques have been increasingly applied to the assessment of various natural disasters, including landslides and floods. Machine learning techniques can be used to make predictions based on the relationships among events and their influencing factors. In this study, a machine learning approaches were applied based on landslide location data in a geographic information system environment. Topographic maps were used to determine the topographical factors. Additional soil and forest parameters were examined using information obtained from soil and forest maps. A total of 17 factors affecting landslide occurrence were selected and a spatial database was constructed. Naïve Bayes and Bayesian network models were applied to predict landslides based on selected risk factors. The two models showed accuracies of 78.3 and 79.8%, respectively. The results of this study provide a useful foundation for effective strategies to prevent and manage landslides in urban areas. Numéro de notice : A2020-658 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585482 Date de publication en ligne : 16/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585482 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96130
in Geocarto international > vol 35 n° 15 [01/11/2020] . - pp 1665 - 1679[article]Volcano-seismic transfer learning and uncertainty quantification with bayesian neural networks / Angel Bueno in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
![]()
[article]
Titre : Volcano-seismic transfer learning and uncertainty quantification with bayesian neural networks Type de document : Article/Communication Auteurs : Angel Bueno, Auteur ; Carmen Benitez, Auteur ; Silvio De Angelis, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] apprentissage profond
[Termes IGN] classification bayesienne
[Termes IGN] classification par réseau neuronal
[Termes IGN] forme d'onde
[Termes IGN] incertitude des données
[Termes IGN] réseau bayesien
[Termes IGN] réseau neuronal profond
[Termes IGN] Russie
[Termes IGN] séisme
[Termes IGN] sismologie
[Termes IGN] surveillance géologique
[Termes IGN] volcanologie
[Termes IGN] Washington (Etats-Unis ; état)Résumé : (auteur) Over the past few years, deep learning (DL) has emerged as an important tool in the fields of volcano and earthquake seismology. However, these methods have been applied without performing thorough analyses of the associated uncertainties. Here, we propose a solution to enhance volcano-seismic monitoring systems, through probabilistic Bayesian DL; we implement and demonstrate a workflow for waveform classification, rapid quantification of the associated uncertainty, and link these uncertainties to changes in volcanic unrest. Specifically, we introduce Bayesian neural networks (BNNs) to perform event identification, classification, and their estimated uncertainty on data gathered at two active volcanoes, Mount St. Helens, Washington, USA, and Bezymianny, Kamchatka, Russia. We demonstrate how BNNs achieve excellent performance (92.08%) in discriminating both the type of event and its origin when the two data sets are merged together, and no additional training information is provided. Finally, we demonstrate that the data representations learned by the BNNs are transferable across different eruptive periods. We also find that the estimated uncertainty is related to changes in the state of unrest at the volcanoes and propose that it could be used to gauge whether the learned models may be exported to other eruptive scenarios. Numéro de notice : A2020-094 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2941494 Date de publication en ligne : 07/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2941494 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94657
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 2 (February 2020) . - pp[article]PermalinkA Bayesian network-based method to alleviate the ill-posed inverse problem: A case study on leaf area index and canopy water content retrieval / Xingwen Quan in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)
PermalinkBayesian belief networks as a versatile method for assessing uncertainty in land-change modeling / Carsten Krüger in International journal of geographical information science IJGIS, vol 29 n° 1 (January 2015)
PermalinkThe Bayesian detection of discontinuities in a polynomial regression and its application to the cycle-slip problem / M.C. DE Lacy in Journal of geodesy, vol 82 n° 9 (September 2008)
PermalinkSemantic-sensitive satellite image retrieval / Y. Li in IEEE Transactions on geoscience and remote sensing, vol 45 n° 4 (April 2007)
PermalinkPermalinkApplication des réseaux bayésiens de classification dans les systèmes d'informatin géographique / Marie-Aline Cavarroc (2005)
PermalinkHierarchical Bayesian nets for building extraction using dense digital surface models / A. Brunn in ISPRS Journal of photogrammetry and remote sensing, vol 53 n° 5 (September - October 1998)
PermalinkPermalink