Descripteur
Documents disponibles dans cette catégorie (33)



Etendre la recherche sur niveau(x) vers le bas
Downscaling MODIS spectral bands using deep learning / Rohit Mukherjee in GIScience and remote sensing, vol 58 n° 8 (2021)
![]()
[article]
Titre : Downscaling MODIS spectral bands using deep learning Type de document : Article/Communication Auteurs : Rohit Mukherjee, Auteur ; Desheng Liu, Auteur Année de publication : 2021 Article en page(s) : pp 1300 - 1315 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bande spectrale
[Termes IGN] image à basse résolution
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réduction d'échelle
[Termes IGN] résolution multipleRésumé : (auteur) MODIS sensors are widely used in a broad range of environmental studies, many of which involve joint analysis of multiple MODIS spectral bands acquired at disparate spatial resolutions. To extract land surface information from multi-resolution MODIS spectral bands, existing studies often downscale lower resolution (LR) bands to match the higher resolution (HR) bands based on simple interpolation or more advanced statistical modeling. Statistical downscaling methods rely on the functional relationship between the LR spectral bands and HR spatial information, which may vary across different land surface types, making statistical downscaling methods less robust. In this paper, we propose an alternative approach based on deep learning to downscale 500 m and 1000 m spectral bands of MODIS to 250 m without additional spatial information. We employ a superresolution architecture based on an encoder decoder network. This deep learning-based method uses a custom loss function and a self-attention layer to preserve local and global spatial relationships of the predictions. We compare our approach with a statistical method specifically developed for downscaling MODIS spectral bands, an interpolation method widely used for downscaling multi-resolution spectral bands, and a deep learning superresolution architecture previously used for downscaling satellite imagery. Results show that our deep learning method outperforms on almost all spectral bands both quantitatively and qualitatively. In particular, our deep learning-based method performs very well on the thermal bands due to the larger scale difference between the input and target resolution. This study demonstrates that our proposed deep learning-based downscaling method can maintain the spatial and spectral fidelity of satellite images and contribute to the integration and enhancement of multi-resolution satellite imagery. Numéro de notice : A2021-124 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2021.1984129 Date de publication en ligne : 26/10/2021 En ligne : https://doi.org/10.1080/15481603.2021.1984129 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99309
in GIScience and remote sensing > vol 58 n° 8 (2021) . - pp 1300 - 1315[article]Nouvelle méthode en cascade pour la classification hiérarchique multi-temporelle ou multi-capteur d'images satellitaires haute résolution / Ihsen Hedhli in Revue Française de Photogrammétrie et de Télédétection, n° 216 (février 2018)
![]()
[article]
Titre : Nouvelle méthode en cascade pour la classification hiérarchique multi-temporelle ou multi-capteur d'images satellitaires haute résolution Type de document : Article/Communication Auteurs : Ihsen Hedhli, Auteur ; Gabriele Moser, Auteur ; Josiane Zerubia, Auteur Année de publication : 2018 Article en page(s) : pp 3 - 17 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] appariement d'images
[Termes IGN] arbre (mathématique)
[Termes IGN] chaîne de Markov
[Termes IGN] classification bayesienne
[Termes IGN] classification dirigée
[Termes IGN] image Cosmo-Skymed
[Termes IGN] image Pléiades-HR
[Termes IGN] modèle statistique
[Termes IGN] résolution multiple
[Termes IGN] série temporelleRésumé : (Auteur) Ce papier présente un modèle de classification multi-résolution, multi-date et éventuellement multi-capteur fondé sur une modélisation statistique explicite au travers d'un modèle hiérarchique de champs de Markov construit sur une structure quad-arbre. L'approche proposée consiste en un classifieur bayésien supervisé qui combine un modèle statistique conditionnel par classe et un champ de Markov hiérarchique fusionnant l'information spatio-temporelle et multi-résolution. La méthode proposée intègre des informations pixel par pixel à la même résolution. Cela en se basant sur le critère des Modes Marginales a Posteriori (MPM en anglais), qui vise à affecter à chaque pixel l'étiquette optimale en maximisant récursivement la probabilité marginale a posteriori, étant donné l'ensemble des observations multi-temporelles ou multi-capteur. Une des originalités de l'approche proposée est l'utilisation en cascade de plusieurs quad-arbres, chacun étant associé à une nouvelle image disponible, en vue de caractériser les corrélations associées à des images distinctes. Numéro de notice : A2018-091 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.52638/rfpt.2018.301 Date de publication en ligne : 19/04/2018 En ligne : https://doi.org/10.52638/rfpt.2018.301 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89500
in Revue Française de Photogrammétrie et de Télédétection > n° 216 (février 2018) . - pp 3 - 17[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 018-2018011 SL Revue Centre de documentation Revues en salle Disponible 018-2018012 SL Revue Centre de documentation Revues en salle Disponible Intersensor statistical matching for pansharpening : theoretical issues and practical solutions / Luciano Alparone in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
![]()
[article]
Titre : Intersensor statistical matching for pansharpening : theoretical issues and practical solutions Type de document : Article/Communication Auteurs : Luciano Alparone, Auteur ; Andrea Garzelli, Auteur ; Gemine Vivone, Auteur Année de publication : 2017 Article en page(s) : pp 4682 - 4695 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] appariement d'histogramme
[Termes IGN] appariement d'images
[Termes IGN] image Ikonos
[Termes IGN] image multibande
[Termes IGN] image multicapteur
[Termes IGN] image panchromatique
[Termes IGN] image Worldview
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] résolution multipleRésumé : (Auteur) In this paper, the authors investigate the statistical matching of the panchromatic (Pan) image to the multispectral (MS) bands, also known as the histogram matching, for the two main classes of pansharpening methods, i.e., those based on component substitution (CS) or spectral methods and those based on multiresolution analysis (MRA) or spatial methods. Also, hybrid methods combining CS with MRA, like the widespread additive wavelet luminance proportional (AWLP), are investigated. It is shown that all spectral, spatial, and hybrid methods must perform a dynamics matching of the enhancing Pan to the individual MS bands for MRA or a combination of them (the component that shall be substituted) for CS. For hybrid methods, the problem is more complex and both types of histogram matching may be suitable. Such an intersensor balance may be either explicit or implicitly performed by the detail-injection model, e.g., the popular projective and multiplicative injection models. An experimental setup exploiting IKONOS and WorldView-2 data sets demonstrates that a correct histogram matching is the key to attain extra performance from established methods. As a first result of this paper, the AWLP method has been revisited and its performance significantly improved by simply performing the histogram matching of Pan to the individual MS bands, rather than to the intensity component, thereby losing the original proportionality feature. Numéro de notice : A2017-502 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2697943 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2697943 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86447
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4682 - 4695[article]Improving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learning-based super-resolution / Huihui Song in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)
![]()
[article]
Titre : Improving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learning-based super-resolution Type de document : Article/Communication Auteurs : Huihui Song, Auteur ; Bo Huang, Auteur ; Qingshan Liu, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 1195 - 1204 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] couple stéréoscopique
[Termes IGN] dégradation d'image
[Termes IGN] fauchée
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] image SPOT 5
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] résolution multipleRésumé : (Auteur) To take advantage of the wide swath width of Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images and the high spatial resolution of Système Pour l'Observation de la Terre 5 (SPOT5) images, we present a learning-based super-resolution method to fuse these two data types. The fused images are expected to be characterized by the swath width of TM/ETM+ images and the spatial resolution of SPOT5 images. To this end, we first model the imaging process from a SPOT image to a TM/ETM+ image at their corresponding bands, by building an image degradation model via blurring and downsampling operations. With this degradation model, we can generate a simulated Landsat image from each SPOT5 image, thereby avoiding the requirement for geometric coregistration for the two input images. Then, band by band, image fusion can be implemented in two stages: 1) learning a dictionary pair representing the high- and low-resolution details from the given SPOT5 and the simulated TM/ETM+ images; 2) super-resolving the input Landsat images based on the dictionary pair and a sparse coding algorithm. It is noteworthy that the proposed method can also deal with the conventional spatial and spectral fusion of TM/ETM+ and SPOT5 images by using the learned dictionary pairs. To examine the performance of the proposed method of fusing the swath width of TM/ETM+ and the spatial resolution of SPOT5, we illustrate the fusion results on the actual TM images and compare with several classic pansharpening methods by assuming that the corresponding SPOT5 panchromatic image exists. Furthermore, we implement the classification experiments on both actual images and fusion results to demonstrate the benefits of the proposed method for further classification applications. Numéro de notice : A2015-130 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2335818 Date de publication en ligne : 25/07/2014 En ligne : https://doi.org/10.1109/TGRS.2014.2335818 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75793
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 3 (March 2015) . - pp 1195 - 1204[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015031 RAB Revue Centre de documentation En réserve 3L Disponible Automated parameterisation for multi-scale image segmentation on multiple layers / L. Drăguț in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
![]()
[article]
Titre : Automated parameterisation for multi-scale image segmentation on multiple layers Type de document : Article/Communication Auteurs : L. Drăguț, Auteur ; O. Csillik, Auteur ; C. Eisank, Auteur ; D. Tiede, Auteur Année de publication : 2014 Article en page(s) : pp 119 - 127 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] eCognition
[Termes IGN] facteur d'échelle
[Termes IGN] résolution multiple
[Termes IGN] segmentation d'image
[Termes IGN] varianceRésumé : (Auteur) We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multi-resolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis. Numéro de notice : A2014-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.018 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32993
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 119 - 127[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve 3L Disponible A supervised and fuzzy-based approach determine optimal multi-resolution image segmentation parameters / H. Tong in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 10 (October 2012)
PermalinkModelling the erectheion: extracting information from very large datasets / J. Beraldin in GIM international, vol 23 n° 11 (November 2009)
PermalinkA Wavelet and IHS integration method to fuse high resolution SAR with moderate resolution multispectral images / G. Hong in Photogrammetric Engineering & Remote Sensing, PERS, vol 75 n° 10 (October 2009)
PermalinkFusion of multispectral and panchromatic images using a restoration-based method / Z. Li in IEEE Transactions on geoscience and remote sensing, vol 47 n° 5 (May 2009)
PermalinkVariable-resolution compression of vector data / B. Yang in Geoinformatica, vol 12 n° 3 (September - November 2008)
PermalinkMultispectral images fusion by a joint multidirectional and multiresolution representation / M. Lillo-Saaverda in International Journal of Remote Sensing IJRS, vol 28 n°17-18 (September 2007)
PermalinkUnified hybrid terrain representation based on local convexifications / M. Bóo in Geoinformatica, vol 11 n° 3 (September - November 2007)
PermalinkEfficient multiresolution spatial predictions for large data arrays / Magnussen, Steen in Remote sensing of environment, vol 109 n° 4 (30 August 2007)
PermalinkAnalysis of epipolar geometry in linear array scanner scenes / A.F. Habib in Photogrammetric record, vol 20 n° 109 (March - May 2005)
PermalinkA Bayesian approach to classification of multiresolution remote sensing data / G. Storvik in IEEE Transactions on geoscience and remote sensing, vol 43 n° 3 (March 2005)
Permalink