Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > segmentation > segmentation multi-échelle
segmentation multi-échelleVoir aussi |
Documents disponibles dans cette catégorie (20)



Etendre la recherche sur niveau(x) vers le bas
Feature-selection high-resolution network with hypersphere embedding for semantic segmentation of VHR remote sensing images / Hanwen Xu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
![]()
[article]
Titre : Feature-selection high-resolution network with hypersphere embedding for semantic segmentation of VHR remote sensing images Type de document : Article/Communication Auteurs : Hanwen Xu, Auteur ; Xinming Tang, Auteur ; Bo Ai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4411915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] architecture de réseau
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] segmentation multi-échelle
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Very-high-resolution (VHR) remote sensing images contain various multiscale objects, such as large-scale buildings and small-scale cars. However, these multiscale objects cannot be considered simultaneously in the widely used backbones with a large downsampling factor (e.g., VGG-like and ResNet-like), resulting in the appearance of various context aggregation approaches, such as fusing low-level features and attention-based modules. To alleviate this problem caused by backbones with a large downsampling factor, we propose a feature-selection high-resolution network (FSHRNet) based on an observation: if the features maintain high resolution throughout the network, a high precision segmentation result can be obtained by only using a 1× 1 convolution layer with no need for complex context aggregation modules. Specifically, the backbone of FSHRNet is a multibranch structure similar to HRNet where the high-resolution branch is the principal line. Then, a lightweight dynamic weight module, named the feature-selection convolution (FSConv) layer, is presented to fuse multiresolution features, allowing adaptively feature selection based on the characteristic of objects. Finally, a specially designed 1× 1 convolution layer derived from hypersphere embedding is used to produce the segmentation result. Experiments with other widely used methods show that the proposed FSHRNet obtains competitive performance on the ISPRS Vaihingen dataset, the ISPRS Potsdam dataset, and the iSAID dataset. Numéro de notice : A2022-559 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3183144 En ligne : https://doi.org/10.1109/TGRS.2022.3183144 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101184
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 6 (June 2022) . - n° 4411915[article]Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning / Jun Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
![]()
[article]
Titre : Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning Type de document : Article/Communication Auteurs : Jun Xu, Auteur ; Jiasong Li, Auteur ; Hao Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 199 - 205 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification barycentrique
[Termes IGN] distance de Kullback-Leibler
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image Worldview
[Termes IGN] masque
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] séparateur à vaste margeRésumé : (auteur) In object-oriented information extraction from high-resolution remote sensing images, the segmentation and classification of images involves considerable manual participation, which limits the development of automation and intelligence for these purposes. Based on the multi-scale segmentation strategy and case-based reasoning, a new method for extracting high-resolution remote sensing image information by fully using the image and nonimage features of the case object is proposed. Feature selection and weight learning are used to construct a multi-level and multi-layer case library model of surface cover classification reasoning. Combined with image mask technology, this method is applied to extract surface cover classification information from remote sensing images using different sensors, time, and regions. Finally, through evaluation of the extraction and recognition rates, the accuracy and effectiveness of this method was verified. Numéro de notice : A2022-202 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00104R3 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.20-00104R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100006
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 199 - 205[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022031 SL Revue Centre de documentation Revues en salle Disponible MSegnet, a practical network for building detection from high spatial resolution images / Bo Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 12 (December 2021)
![]()
[article]
Titre : MSegnet, a practical network for building detection from high spatial resolution images Type de document : Article/Communication Auteurs : Bo Yu, Auteur ; Fang Chen, Auteur ; Ying Dong, Auteur Année de publication : 2021 Article en page(s) : pp 901 - 906 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] image à haute résolution
[Termes IGN] matrice
[Termes IGN] segmentation multi-échelle
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) Building detection in big earth data by remote sensing is crucial for urban development. However, improving its accuracy remains challenging due to complicated background objects and different viewing angles from various remotely sensed images. The hereto proposed methods predominantly focus on multi-scale feature learning, which omits features in multiple aspect ratios. Moreover, postprocessing is required to refine the segmentation performance. We propose modified semantic segmentation (MSegnet), a single-shot semantic segmentation model based on a matrix of convolution layers to extract features in multiple scales and aspect ratios. MSegnet consists of two modules: backbone feature learning and matrix convolution to conduct vertical and horizontal learning. The matrix convolution comprises a set of convolution operations with different aspect ratios. MSegnet is applied to a public building data set that is widely used for evaluation and shown to achieve satisfactory accuracy, compared with the published single-shot methods. Numéro de notice : A2021-898 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00016R2 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.14358/PERS.21-00016R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99296
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 12 (December 2021) . - pp 901 - 906[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021121 SL Revue Centre de documentation Revues en salle Disponible Multiscale context-aware ensemble deep KELM for efficient hyperspectral image classification / Bobo Xi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
![]()
[article]
Titre : Multiscale context-aware ensemble deep KELM for efficient hyperspectral image classification Type de document : Article/Communication Auteurs : Bobo Xi, Auteur ; Jiaojiao Li, Auteur ; Yunsong Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5114 - 5130 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] segmentation multi-échelle
[Termes IGN] superpixelRésumé : (auteur) Recently, multiscale spatial features have been widely utilized to improve the hyperspectral image (HSI) classification performance. However, fixed-size neighborhood involving the contextual information probably leads to misclassifications, especially for the boundary pixels. Additionally, it has been demonstrated that deep neural network (DNN) is practical to extract representative features for the classification tasks. Nevertheless, under the condition of high dimensionality versus small sample sizes, DNN tends to be over-fitting and it is generally time-consuming due to the deep-level feature learning process. To alleviate the aforementioned issues, we propose a multiscale context-aware ensemble deep kernel extreme learning machine (MSC-EDKELM) for efficient HSI classification. First, the scene of the HSI data set is over-segmented in multiscale via using the adaptive superpixel segmentation technique. Second, superpixel pattern (SP) and attentional neighboring superpixel pattern (ANSP) are generated by leveraging the superpixel maps, which can automatically comprise local and global contextual information, respectively. Afterward, an ensemble deep kernel extreme learning machine (EDKELM) is presented to investigate the deep-level characteristics in the SP and ANSP. Finally, the category of each pixel is accurately determined by the decision fusion and weighted output layer fusion strategy. Experimental results on four real-world HSI data sets demonstrate that the proposed frameworks outperform some classic and state-of-the-art methods with high computational efficiency, which can be employed to serve real-time applications. Numéro de notice : A2021-426 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.1109/TGRS.2020.3022029 Date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3022029 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97782
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 5114 - 5130[article]A novel class-specific object-based method for urban change detection using high-resolution remote sensing imagery / Ting Bai in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 4 (April 2021)
![]()
[article]
Titre : A novel class-specific object-based method for urban change detection using high-resolution remote sensing imagery Type de document : Article/Communication Auteurs : Ting Bai, Auteur ; Kaimin Sun, Auteur ; Wenzhuo Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 249-262 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement d'occupation du sol
[Termes IGN] classe d'objets
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] image à haute résolution
[Termes IGN] milieu urbain
[Termes IGN] segmentation multi-échelleRésumé : (Auteur) A single-scale object-based change-detection classifier can distinguish only global changes in land cover, not the more granular and local changes in urban areas. To overcome this issue, a novel class-specific object-based change-detection method is proposed. This method includes three steps: class-specific scale selection, class-specific classifier selection, and land cover change detection. The first step combines multi-resolution segmentation and a random forest to select the optimal scale for each change type in land cover. The second step links multi-scale hierarchical sampling with a classifier such as random forest, support vector machine, gradient-boosting decision tree, or Adaboost; the algorithm automatically selects the optimal classifier for each change type in land cover. The final step employs the optimal classifier to detect binary changes and from-to changes for each change type in land cover. To validate the proposed method, we applied it to two high-resolution data sets in urban areas and compared the change-detection results of our proposed method with that of principal component analysis k-means, object-based change vector analysis, and support vector machine. The experimental results show that our proposed method is more accurate than the other methods. The proposed method can address the high levels of complexity found in urban areas, although it requires historical land cover maps as auxiliary data. Numéro de notice : A2021-332 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.4.249 Date de publication en ligne : 01/04/2021 En ligne : https://doi.org/10.14358/PERS.87.4.249 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97528
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 4 (April 2021) . - pp 249-262[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021041 SL Revue Centre de documentation Revues en salle Disponible Parsing of urban facades from 3D point clouds based on a novel multi-view domain / Wei Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 4 (April 2021)
PermalinkExtraction of impervious surface using Sentinel-1A time-series coherence images with the aid of a Sentinel-2A image / Wenfu Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)
PermalinkSemi-automatic building extraction from WorldView-2 imagery using taguchi optimization / Hasan Tonbul in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
PermalinkClassification of poplar trees with object-based ensemble learning algorithms using Sentinel-2A imagery / H. Tombul in Journal of geodetic science, vol 10 n° 1 (January 2020)
PermalinkUnsupervised classification of multispectral images embedded with a segmentation of panchromatic images using localized clusters / Ting Mao in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
PermalinkA local approach to optimize the scale parameter in multiresolution segmentation for multispectral imagery / F. Cánovas-García in Geocarto international, vol 30 n° 7 - 8 (August - September 2015)
PermalinkToward evaluating multiscale segmentations of high spatial resolution remote sensing images / Xueliang Zhang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
PermalinkFast hierarchical segmentation of high-resolution remote sensing images with adaptative edge penalty / Xuellang Zhang in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 1 (January 2014)
PermalinkRange of categorical associations for comparison of maps with mixed pixels / Robert Gilmore Pontius in Photogrammetric Engineering & Remote Sensing, PERS, vol 75 n° 8 (August 2009)
PermalinkPermalink