Descripteur
Documents disponibles dans cette catégorie (30)



Etendre la recherche sur niveau(x) vers le bas
Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
![]()
[article]
Titre : Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection Type de document : Article/Communication Auteurs : David Alejandro Jimenez-Sierra, Auteur ; David Alfredo Quintero-Olaya, Auteur ; Juan Carlos Alvear-Muñoz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4410416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] détection de changement
[Termes IGN] graphe
[Termes IGN] image multibande
[Termes IGN] image radar moirée
[Termes IGN] Kappa de Cohen
[Termes IGN] lissage de données
[Termes IGN] processus gaussien
[Termes IGN] réseau sémantique
[Termes IGN] segmentation d'image
[Termes IGN] seuillage
[Termes IGN] superpixelRésumé : (auteur) Graph-based methods are promising approaches for traditional and modern techniques in change detection (CD) applications. Nonetheless, some graph-based approaches omit the existence of useful priors that account for the structure of a scene, and the inter- and intra-relationships between the pixels are analyzed. To address this issue, in this article, we propose a framework for CD based on graph fusion and driven by graph signal smoothness representation. In addition to modifying the graph learning stage, in the proposed model, we apply a Gaussian mixture model for superpixel segmentation (GMMSP) as a downsampling module to reduce the computational cost required to learn the graph of the entire images. We carry out tests on 14 real cases of natural disasters, farming, and construction. The dataset contains homogeneous cases with multispectral (MS) and synthetic aperture radar (SAR) images, along with heterogeneous cases that include MS/SAR images. We compare our approach against probabilistic thresholding, unsupervised learning, deep learning, and graph-based methods. In terms of Cohen’s kappa coefficient, our proposed model based on graph signal smoothness representation outperformed state-of-the-art approaches in ten out of 14 datasets. Numéro de notice : A2022-379 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3168126 Date de publication en ligne : 18/04/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3168126 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100643
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 4 (April 2022) . - n° 4410416[article]The use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space / Renato César Dos santos in Applied geomatics, vol 13 n° 4 (December 2021)
![]()
[article]
Titre : The use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space Type de document : Article/Communication Auteurs : Renato César Dos santos, Auteur ; Mauricio Galo, Auteur ; André C. Carrilho, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 499 - 513 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme de Otsu
[Termes IGN] analyse de groupement
[Termes IGN] Brésil
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données multitemporelles
[Termes IGN] espace urbain
[Termes IGN] modèle numérique de surface
[Termes IGN] planéité
[Termes IGN] semis de points
[Termes IGN] seuillageRésumé : (auteur) Building change detection techniques are essential for several urban applications. In this context, multi-temporal airborne LiDAR data has been considered an effective alternative since it has some advantages over conventional photogrammetry. Despite several works in the literature, the automatic class definition with great accuracy and performance remains a challenge in change detection. The developed strategies usually explore training samples or empirical thresholds to discriminate the classes. To overcome this limitation, we proposed an automatic building change detection method based on Otsu algorithm and median planarity attribute computed from eigenvalues. The main contribution corresponds to the automatic and unsupervised identification of building changes. The experiments were conducted using airborne LiDAR data from two epochs: 2012 and 2014. From qualitative and quantitative analysis, the robustness of the proposed method in detecting building changes in urban areas was evaluated, presenting completeness and correctness around 99% and 76%, respectively. Numéro de notice : A2021-856 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1007/s12518-021-00371-6 Date de publication en ligne : 24/04/2021 En ligne : https://doi.org/10.1007/s12518-021-00371-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99062
in Applied geomatics > vol 13 n° 4 (December 2021) . - pp 499 - 513[article]Double adaptive intensity-threshold method for uneven Lidar data to extract road markings / Chengming Ye in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
![]()
[article]
Titre : Double adaptive intensity-threshold method for uneven Lidar data to extract road markings Type de document : Article/Communication Auteurs : Chengming Ye, Auteur ; Hongfu Li, Auteur ; Ruilong Wei, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 639-648 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction du réseau routier
[Termes IGN] filtre adaptatif
[Termes IGN] lidar mobile
[Termes IGN] méthode robuste
[Termes IGN] semis de points
[Termes IGN] seuillage de points
[Termes IGN] signalisation routièreRésumé : (Auteur) Due to the large volume and high redundancy of point clouds, there are many dilemmas in road-marking extraction algorithms, especially from uneven lidar point clouds. To extract road markings efficiently, this study presents a novel method for handling the uneven density distribution of point clouds and the high reflection intensity of road markings. The method first segments the point-cloud data into blocks perpendicular to the vehicle trajectory. Then it applies the double adaptive intensity-threshold method to extract road markings from road surfaces. Finally, it performs an adaptive spatial density filter based on the density distribution of point-cloud data to remove false road-marking points. The average completeness, correctness, and F measure of road-marking extraction are 0.827, 0.887, and 0.854, respectively, indicating that the proposed method is efficient and robust. Numéro de notice : A2021-672 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00099 Date de publication en ligne : 01/09/2021 En ligne : https://doi.org/10.14358/PERS.20-00099 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98834
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 9 (September 2021) . - pp 639-648[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021091 SL Revue Centre de documentation Revues en salle Disponible An adaptive filtering algorithm of multilevel resolution point cloud / Youyuan Li in Survey review, Vol 53 n° 379 (July 2021)
![]()
[article]
Titre : An adaptive filtering algorithm of multilevel resolution point cloud Type de document : Article/Communication Auteurs : Youyuan Li, Auteur ; Jian Wang, Auteur ; Bin Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 300 - 311 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de filtrage
[Termes IGN] analyse multirésolution
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] données lidar
[Termes IGN] filtrage de points
[Termes IGN] filtre adaptatif
[Termes IGN] interpolation spatiale
[Termes IGN] Kappa de Cohen
[Termes IGN] octree
[Termes IGN] pente
[Termes IGN] semis de points
[Termes IGN] seuillage de pointsRésumé : (auteur) The existing filtering methods for airborne LiDAR point cloud have low accuracy. An adaptive filtering algorithm is proposed which is improved based on multilevel resolution algorithm. First double index structure of Octree and KDtree is established. Then the initial reference surface is constructed by ground seed points. According to the slope fluctuation situation, the grid resolution of the ground referential surface is adjusted in an adaptive way. Finally, the refined surface is formed gradually by multilevel renewing resolution to provide filtered point cloud with high accuracy. Experimental results show that the error of Type II can be effectively reduced, the average Kappa coefficient increases by 0.53% and the average total error decreases by 0.44% compared with multiresolution hierarchical classification algorithm. The result tested by practically measured data shows that Kappa coefficient can reach 90%. Especially, it maintains advantages of high accuracy under complex topographic environment. Numéro de notice : A2021-544 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2020.1755163 Date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1080/00396265.2020.1755163 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98042
in Survey review > Vol 53 n° 379 (July 2021) . - pp 300 - 311[article]A new small area estimation algorithm to balance between statistical precision and scale / Cédric Vega in International journal of applied Earth observation and geoinformation, vol 97 (May 2021)
![]()
[article]
Titre : A new small area estimation algorithm to balance between statistical precision and scale Type de document : Article/Communication Auteurs : Cédric Vega , Auteur ; Jean-Pierre Renaud, Auteur ; Ankit Sagar
, Auteur ; Olivier Bouriaud
, Auteur
Année de publication : 2021 Projets : LUE / Université de Lorraine, DIABOLO / Packalen, Tuula, ARBRE/CHM-era / Jolly, Anne Article en page(s) : n° 102303 Note générale : bibliographie
This research was funded by The French Environmental Management Agency (ADEME), grant number 16-60-C0007. The methods and algorithms for processing photogrammetric data were supported by DIABOLO project from the European Union’s Horizon 2020 research and innovation program under grant agreement No 633464, as well as CHM-ERA project from the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). Ankit Sagar received the financial support of the French PIA project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE, through the project Impact DeepSurf.Langues : Anglais (eng) Descripteur : [Termes IGN] arbre BSP
[Termes IGN] capital sur pied
[Termes IGN] données auxiliaires
[Termes IGN] données de terrain
[Termes IGN] estimation bayesienne
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] réduction d'échelle
[Termes IGN] seuillage
[Termes IGN] surface terrière
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Combining national forest inventory (NFI) data with auxiliary information allows downscaling and improving the precision of NFI estimates for small domains, where normally too few field plots are available to produce reliable estimates. In most situations, small domains represent administrative units that could greatly vary in size and forested area. In small and poorly sampled domains, the precision of estimates often drop below expected standards.
To tackle this issue, we introduce a downscaling algorithm generating the smallest possible groups of domains satisfying prescribed sampling density and estimation error. The binary space partitioning algorithm recursively divides the population of domains in two groups while the prescribed precision conditions are fulfilled.
The algorithm was tested on two major forest attributes (i.e. growing stock and basal area) in an area of 7,500 km2 dominated by hardwood forests in the centre of France. The estimation domains consisted in 157 municipalities. The field data included 819 NFI plots surveyed during a 5 years period. The auxiliary data consisted in 48 metrics derived from a forest map, photogrammetric models and Landsat images. A model-assisted framework was used for estimation. For each forest attribute, the best model was selected using a best-subset approach using a Bayesian Information Criteria. The retained models explained 58% and 41% of the observed variance for the growing stocks and basal areas respectively. The performance of the algorithm was evaluated using a minimum of 3 NFI points per domain and estimation errors varying from 10 to 50%.
For a target estimation error set to 10%, the algorithm led to a limited number of estimation domains ( The algorithm provides a flexible estimation framework for small area estimation. The key advantages of the approach are relying on its capacity to produce estimations based on a preselected precision threshold and to produce results over the whole area of interest, avoiding areas without any estimates. The algorithm could also be used on any kind of polygon layers (not only administrative ones), provided that the field sampling design enable estimation. This makes the proposed algorithm a convenient tool notably for decision makers and forest managers.Numéro de notice : A2021-067 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2021.102303 Date de publication en ligne : 25/01/2021 En ligne : https://doi.org/10.1016/j.jag.2021.102303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96992
in International journal of applied Earth observation and geoinformation > vol 97 (May 2021) . - n° 102303[article]A novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm / Sara Khanbani in Applied geomatics, vol 13 n° 1 (May 2021)
Permalink3D change detection using adaptive thresholds based on local point cloud density / Dan Liu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
PermalinkAn improved rainfall-threshold approach for robust prediction and warning of flood and flash flood hazards / Geraldo Moura Ramos Filho in Natural Hazards, Vol 105 n° 3 (February 2021)
PermalinkAcquisition of weak GPS signals using wavelet-based de-noising methods / Mohaddeseh Sharie in Survey review, vol 52 n° 375 (November 2020)
PermalinkExtraction of urban built-up areas from nighttime lights using artificial neural network / Tingting Xu in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkAssessment of winter season land surface temperature in the Himalayan regions around the Kullu area in India using Landsat-8 data / Divyesh Varade in Geocarto international, vol 35 n° 6 ([01/05/2020])
PermalinkTransferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkApplication of digital image processing in automated analysis of insect leaf mines / Yee Man Theodora Cho (2020)
PermalinkNovel adaptive histogram trend similarity approach for land cover change detection by using bitemporal very-high-resolution remote sensing images / Zhi Yong Lv in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)
PermalinkTree size thresholds produce biased estimates of forest biomass dynamics / Eric B. Searle in Forest ecology and management, vol 400 (15 September 2017)
Permalink