Descripteur



Etendre la recherche sur niveau(x) vers le bas
Photogrammetric and Lidar data registration using linear features / A. Habib in Photogrammetric Engineering & Remote Sensing, PERS, vol 71 n° 6 (June 2005)
[article]
Titre : Photogrammetric and Lidar data registration using linear features Type de document : Article/Communication Auteurs : A. Habib, Auteur ; M. Ghanma, Auteur ; et al., Auteur Année de publication : 2005 Article en page(s) : pp 699 - 707 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes descripteurs IGN] cohérence des données
[Termes descripteurs IGN] compensation par faisceaux
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données multicapteurs
[Termes descripteurs IGN] espace objet
[Termes descripteurs IGN] ligne caractéristique
[Termes descripteurs IGN] méthode robuste
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] objet géographique linéaire
[Termes descripteurs IGN] reconstruction 3D
[Termes descripteurs IGN] superposition de données
[Termes descripteurs IGN] système de référence localRésumé : (Auteur) The enormous increase in the volume of datasets acquired by lidar systems is leading towards their extensive exploitation in a variety of applications, such as, surface reconstruction, city modeling, and generation of perspective views. Though being a fairly new technology, lidar has been influenced by and had a significant impact on photogrammetry. Such an influence or impact can be attributed to the complementary nature of the information provided by the two systems. For example, photogrammetric processing of imagery produces accurate information regarding object space break lines (discontinuities). On the other hand, lidar provides accurate information describing homogeneous physical surfaces. Hence, it proves logical to combine data from the two sensors to arrive at a more robust and complete reconstruction of 3D objects. This paper introduces alternative approaches for the registration of data captured by photogrammetric and lidar systems to a common reference frame. The first approach incorporates lidar features as control for establishing the datum in the photogrammetric bundle adjustment. The second approach starts by manipulating the photogrammetric imagery to produce a 3D model, including a set of linear features along object space discontinuities, relative to an arbitrarily chosen coordinate system. Afterwards, conjugate photogrammetric and lidar straightline features are used to establish the transformation between the arbitrarily chosen photogrammetric coordinate system and the lidar reference frame. The second approach (bundle adjustment, followed by similarity transformation) is general enough to be applied for the co-registration of multiple three-dimensional datasets regardless of their origin (e.g., adjacent lidar strips, surfaces in Gis databases, and temporal elevation data). The registration procedure would allow for the identification of inconsistencies between the surfaces in question. Such inconsistencies might arise from changes taking place within the object space or inaccurate calibration of the internal characteristics of the lidar and the photogrammetric systems. Therefore, the proposed methodology is useful for change detection and system calibration applications. Experimental results from aerial and terrestrial datasets proved the feasibility of the suggested methodologies. Numéro de notice : A2005-219 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27356
in Photogrammetric Engineering & Remote Sensing, PERS > vol 71 n° 6 (June 2005) . - pp 699 - 707[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 105-05061 RAB Revue Centre de documentation En réserve 3L Disponible 105-05062 RAB Revue Centre de documentation En réserve 3L Disponible Classifying depth-layered geological structures on Landsat TM images by gravity data: a case study of the western slope of Songliao Basin, northeast China / Shuli Chen in International Journal of Remote Sensing IJRS, vol 26 n° 2 (January 2005)
[article]
Titre : Classifying depth-layered geological structures on Landsat TM images by gravity data: a case study of the western slope of Songliao Basin, northeast China Type de document : Article/Communication Auteurs : Shuli Chen, Auteur ; Y. Zhou, Auteur Année de publication : 2005 Article en page(s) : pp 2741 - 2754 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] déconvolution
[Termes descripteurs IGN] géologie locale
[Termes descripteurs IGN] géologie structurale
[Termes descripteurs IGN] image Landsat-TM
[Termes descripteurs IGN] levé gravimétrique
[Termes descripteurs IGN] linéament
[Termes descripteurs IGN] structure géologique
[Termes descripteurs IGN] superposition de données
[Termes descripteurs IGN] système d'information géographiqueRésumé : (Auteur) Geological structures on remotely sensed images, Landsat Thematic Mapper (TM) images in this case, can be classified by quantitative depth information on the basis of the comparison of results from Landsat TM images and geophysical data. Although the lineaments with different depths can be visually interpreted together on Landsat TM images, the depth information and geological significance of these lineaments are however hard to obtain solely from the Landsat TM images of a study area under a thick cover, and it is of much importance for hydrocarbon exploration in the Western Slope Belt of Songliao Basin, northeast China. During the present study, the 3-dimensional field source information, including location and depth information, is derived from 3dimensional Euler deconvolution of gravity data in particular. As an example, it may be quantitatively classified into four groups of depth range: 1000m. It is then superimposed onto the lineaments map from Landsat TM images using a geographical information system (GIS). With a comprehensive analysis of the superimposed maps, we obtain validation and quantitative depth information of the geological structures delineated on the Landsat TM images. Four depth-layered maps of geological structures with different depths are presented here. It is concluded that the number of structures with depth greater than 1000 m on the Landsat TM images is fewer than those at the other three depth ranges. The detection of geological structures on Landsat TM images attributed to depth information derived from the geophysical data may also be possible by this approach. Numéro de notice : A2005-343 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27479
in International Journal of Remote Sensing IJRS > vol 26 n° 2 (January 2005) . - pp 2741 - 2754[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 080-05021 RAB Revue Centre de documentation En réserve 3L Disponible
Titre : Exploring Geographic Information Systems Type de document : Guide/Manuel Auteurs : Nicholas Chrisman, Auteur Editeur : Londres : John Wiley Année de publication : 1997 Importance : 298 p. Format : 19 x 23 cm ISBN/ISSN/EAN : 978-0-471-10842-9 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes descripteurs IGN] analyse fonctionnelle (produit)
[Termes descripteurs IGN] analyse multicritère
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] diagramme de Voronoï
[Termes descripteurs IGN] isoligne
[Termes descripteurs IGN] manipulation de données
[Termes descripteurs IGN] modèle de représentation des données
[Termes descripteurs IGN] modèle logique de données
[Termes descripteurs IGN] modèle numérique de terrain
[Termes descripteurs IGN] pente
[Termes descripteurs IGN] qualité des données
[Termes descripteurs IGN] relation topologique
[Termes descripteurs IGN] superposition de données
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] système de référence géodésique
[Termes descripteurs IGN] Triangulated Irregular NetworkNote de contenu : PART 1 : BUILDING BLOCKS OF GEOGRAPHIC INFORMATION
Chapter 1 : Measurement Basics
-Development of Geographic Information: The Convergence of Many Technologies
-Defining a Geographic Information System
-Basic Components of Geographic Information
-Measurement: The Conventional View
--Background: Development of Measurement Theory
--Levels of Measurement
Nominal
Ordinal
Interval
Ratio
Extensive and Derived Scales
What is Missing from Stevens
-Reference Systems
--Temporal Reference Systems
--Spatial Reference Systems
--Attribute Reference Systems
Chapter 2 : Measurement Frameworks
Example of a Simple Measurement Framework: The Geographical Matrix
Control and Measurement
Attribute as Control: Isolated Objects to Connected Coverages
Isolated Object Framework
Spatial Object Framework
Isoline Framework
Connected Coverage Frameworks and Topological Relationships
Network Framework
Categorical Coverage Framework
Spatial Control
Pointbased frameworks
Center Point Framework
Systematic Unaligned
Areabased Measurement Frameworks
Extrerne Value
Total
Predominant Type
Presencelabsence and Percent Cover
Precedence of Types
Relationship Control
Measurement by Pair
Triangulated Irregular Networks (TIN)
Composite Frameworks
Associating AttributesIndirect Measurement
Choropleth Framework
Temporal Frameworks
Summary
Chapter 3 : Representation
Primitives for Representation
Primitives for Attributes
Primitives for Space: Coordinates
Representation Models and Data Structures
Vector Model
Representing Isolated Objects
Representing Topological Objects
Raster Model
Conversion of Existing Documents (Digitizing)
Vector Tracing
Raster Scanners
Transforming Digitizer Measurements into Coordinates
Registration on Device
Transformations from Document to Projection
Reference to Geodetic Surveys
Data Quality: Closing the Loop
Verification and Quality Control
After Digitizing
Generalization and Scalechanging
Attaching Attributes by Geocoding
Temporal Updates and Changes
Summary
PART 2 : TRANSFORMATIONS AND OPERATIONS
Chapter 4 : Attributebased Operations
Manipulating Attributes
Reducing the Information content
Group
Isolate
Classify
Scale
Increasing the Information Content
Rank
Evaluate
Rescale
Combining Pairs of Input Values
Crosstabulate
Sum and Difference
Rate and Density
Proportion
Performing Combinations
Interaction of Attribute and Spatial Components
Spatial Consequences of Aggregation and Isolation
Cartographic Generalization
Summary
Chapter 5 : Overlay: Integration of Disparate Sources
Development of Map Overlay
The Overlay Operation
Registration: A Universal Requirement
Raster Implementations of Overlay
Vector Implementations of Overlay
Geometric Intersection Processing
Attribute Handling Using Results of Overlay
Comparisons of Performance and Capabilities
Overlay for Detecting Differences
Change Detection
Accuracy Testing
Interpreting Overlay Results
A Taxonomy of Overlay Combinations
Dominance Rules
Exclusionary Screening
Exclusionary Ranking
Highest Bid/Highest Bidder
Contributory Rules
Voting Tabulation
Weighted Voting
Linear Combination
Weighting and Rating
Nonlinear Combinations
Interaction Rules
Integrated Survey
Factor Combination
Rules of Combination
Summary of Rules
Summary
Chapter 6 : Distance Transformations
Examples of Distance Specifications
Exclusionary Zones Around Features: Buffers and Setbacks
Beyond Buffers and Setbacks
Distance measurement
Distance Relationships
Constructing Buffers with Vector Data
Measuring Distance in a Raster
Comparison
Generalized Voronoi Diagrams
Data Quality Aspects of Distance Relationships
Summary
Chapter 7 : Surfaces and Near Neighbors
Surfaces
Topology of Surfaces
Computing Relationships on a Surface
Slope from Triangles
Slope from Matrices
Neighborhood Operations: The Spatial Component
Neighborhood Construction
Raster Neighbors
Vector Neighbors
Edge Effects
Refinements of Neighborhoods
Combining Neighborhood Attributes: A Taxonomy
Nominal Attributes
Dominance Rules
Contributory Rules
Interaction Rules
Operations Based on Ranking Attributes
Continuous Attributes
A spatial Treatment of Continuous Attributes in a Neighborhood
Continuous Attributes with Horizontal Measures
Data Quality Applications of Neighborhood Operations
Summary
Chapter 8 : Comprehensive Operations
Iterative Operations
Viewshed
Cost Accumulation
An Example of Cost Surface Construction: A Water Pipeline
Drainage Operations
Network Operations
LocationAllocation Problems: A Family of Problems with
a Common Approach
Tougher Problems
Statistical Modeling of Spatial Data
Chapter 9 : Transformations
Prior Approaches to Transformations
Transformations for Surfaces
Interpolation
Interpolation from Scattered points
Interpolation from Isolines
Interpolation from a DEM
To and From Triangles
Network Information and Surfaces
Summary of Surface Transformations
A Taxonomy for Transformations
Transformation by Extraction (Case )
Transformations based on Attribute Assumptions (Case A)
Classification of Remotely Sensed Imagery
Transformations based on Geometric Processing Only (Case IN)
Complete Transformations (Case )
Areal Interpolation
Examples of Transformations
Dasymetric Mapping of Population Density
Wetland Regulation and Wasteland Assessment in Westport, Wisconsin (Area Crosstabulation)
Forest Mapping for the United States (Resampling and Conversion of Imagery)
Summary of Transformations
PART 3 : THE BROADER CONTEXT
Chapter 10 : Evaluation and Implementation
Technical Evaluation
Data Quality Assessment
Measurement Frameworks and Accuracy
Strategy for Testing
Allocation of Resources
Computer Resources
Financial Resources
Human Resources
Implementing a GIS
Needs Assessment
Requirements Analysis
Database Design
Approaches to Geographic Measurement
Bidding Process
Construction
Serving Larger Goals
Chapter 11 : Social and Institutional Context
Technological Change in Historical Context
Geography of Geographic Information
Geographic Information in the Bureaucracy
Institutional Continuity
Institutional Definitions of Time and History
Cooperation and Coordination
Information in its Social Context
Equity
Access to Information
Balancing Competing Concerns
Information and Culture
Culture: Continuity and Change
The Practice of GIS
Summary
BibliographyNuméro de notice : 67492 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Manuel de cours Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=49138 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 67492-01 37.30 Livre Centre de documentation Géomatique Disponible
contenu dans Cassini 1994, Les journées de la recherche sur les systèmes d'information géographique, Lyon, 13 - 14 octobre 1994 / Robert Laurini (1994)
Titre : GéO2 : module de superposition Type de document : Article/Communication Auteurs : Guylaine Schorter, Auteur ; Laurent Raynal, Auteur ; François Vauglin , Auteur
Congrès : Cassini 1994, 1es journées de la recherche du GdR 1041 du CNRS (13 - 14 octobre 1994; Lyon, France), Commanditaire Editeur : Lyon : Institut National des Sciences Appliquées INSA Lyon Année de publication : 1994 Importance : pp 251 - 261 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes descripteurs IGN] GEO2
[Termes descripteurs IGN] imprécision géométrique
[Termes descripteurs IGN] modèle orienté objet
[Termes descripteurs IGN] précision de localisation
[Termes descripteurs IGN] précision des données
[Termes descripteurs IGN] superposition de donnéesRésumé : (auteur) Cet article présente un module de superposition, pour les anglophones « map overlay », qui a été élaboré au laboratoire COGIT de l'ION. Il permet de superposer des cartes numériques les unes sur les autres. Cette opération de superposition passe entre autres par l'intersection géométrique des éléments de sources numériques diverses. Dans cette étape, les problèmes de précision géométrique des données géographiques sont mis en avant, puisque chaque processus de saisie engendre obligatoirement des imprécisions sur l'information géométrique. En effet, répété plusieurs fois sur un inertie point, le processus de saisie n'attribuera jamais exactement la même valeur aux coordonnées. L'information géométrique des données géographiques se doit donc d'être enrichie par une information de précision. Nous avons utilisé une notion de tolérance attachée à chaque objet qui modélise cette imprécision des coordonnées. Cet article est organisé comme suit : la première partie résume la problématique de la superposition, la deuxième partie expose le processus de superposition implanté dans Gé02, puis, la troisième partie mentionne les tests effectués, les résultats obtenus ainsi que les problèmes rencontrés. Enfin, nous présentons les conclusions tirées de ce travail. Numéro de notice : C1994-031 Affiliation des auteurs : IGN (1940-2011) Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliés Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90150