Descripteur



Etendre la recherche sur niveau(x) vers le bas
Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data / Sugandh Chauhan in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
![]()
[article]
Titre : Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data Type de document : Article/Communication Auteurs : Sugandh Chauhan, Auteur ; Roshanak Darvishzadeh, Auteur ; Mirco Boschetti, Auteur ; Andrew Nelson, Auteur Année de publication : 2020 Article en page(s) : pp 138 - 151 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] agrégation
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] blé (céréale)
[Termes descripteurs IGN] courbure
[Termes descripteurs IGN] gestion prévisionnelle
[Termes descripteurs IGN] image Radarsat
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] Italie
[Termes descripteurs IGN] matrice de confusion
[Termes descripteurs IGN] méthode des moindres carrés
[Termes descripteurs IGN] rendement agricole
[Termes descripteurs IGN] surveillance agricoleRésumé : (auteur) Crop lodging - the bending of crop stems from their upright position or the failure of root-soil anchorage systems - is a major yield-reducing factor in wheat and causes deterioration of grain quality. The severity of lodging can be measured by a lodging score (LS)- an index calculated from the crop angle of inclination (CAI) and crop lodged area (LA). LS is difficult and time consuming to measure manually meaning that information on lodging occurrence and severity is limited and sparse. Remote sensing-based estimates of LS can provide more timely, synoptic and reliable information on crop lodging across vast areas. This information could improve estimates of crop yield losses, inform insurance loss adjusters and influence management decisions for subsequent seasons. This research - conducted in the 600 ha wheat sown area in the Bonifiche Ferraresi farm, located in Jolanda di Savoia, Ferrara, Italy - evaluated the performance of RADARSAT-2 and Sentinel-1 data to discriminate and classify lodging severity based on field measured LS. We measured temporal crop status characteristics related to lodging (e.g. lodged area, CAI, crop height) and collected relevant meteorological data (wind speed and rainfall) throughout May-June 2018. These field measurements were used to distinguish healthy (He) wheat from lodged wheat with different degrees of lodging severity (moderate, severe and very severe). We acquired multi-incidence angle (FQ8-27° and FQ21-41°) RADARSAT-2 and Sentinel-1 (40°) images and derived multiple metrics from them to discriminate and classify lodging severity. As a part of our data exploration, we performed a correlation analysis between the image-based metrics and LS. Next, a multi-temporal discriminant analysis approach, including a partial least squares (PLS-DA) method, was developed to classify lodging severities. We used the area under the curve-receiver operating characteristics (AUC-ROC) and confusion matrices to evaluate the accuracy of the PLS-DA classification models. Results show that (1) volume scattering components were highly correlated with LS at low incidence angles while double and surface scattering was more prevalent at high incidence angles; (2) lodging severity was best classified using low incidence angle R-FQ8 data (overall accuracy 72%) and (3) the Sentinel-1 data-based classification model was able to correctly identify 60% of the lodging severity cases in the study site. The results from this first study on classifying lodging severity using satellite-based SAR platforms suggests that SAR-based metrics can capture a substantial proportion of the observed variation in lodging severity, which is important in the context of operational crop lodging assessment in particular, and sustainable agriculture in general. Numéro de notice : A2020-276 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.012 date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.012 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95087
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 138 - 151[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 SL Revue Centre de documentation Revues en salle Disponible 081-2020063 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Soil moisture estimation with SVR and data augmentation based on alpha approximation method / Wei Xu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
![]()
[article]
Titre : Soil moisture estimation with SVR and data augmentation based on alpha approximation method Type de document : Article/Communication Auteurs : Wei Xu, Auteur ; Zhaoxu Zhang, Auteur ; Qiming Qin, Auteur Année de publication : 2020 Article en page(s) : pp 3190 - 3201 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] approximation
[Termes descripteurs IGN] erreur moyenne quadratique
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image ALOS
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] irrigation
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] surveillance agricoleRésumé : (auteur) Soil moisture content is an important parameter in hydrological, meteorological, and agricultural applications. Balenzano et al. proposed the alpha approximation method in 2011 for solving some complex issues during the retrieval of soil moisture over agricultural crops with synthetic aperture radar data. However, determining the constraints and solving the underdetermined system of equations in this method add new challenges. Considering the questions of constraints and underdetermined system of equations, the alpha approximation method is used to augment the measured data, and can avoid solving the underdetermined system of equations with constraints directly. Then, these data are applied in a support vector regression machine for soil moisture estimation. It is found that when an optimal model is determined, the method proposed in this article is superior to the direct use of the alpha approximation method, and the root-mean-squared error (RMSE) decreased from 0.0775 to 0.0339 and R 2 increased from 0.0467 to 0.6491. In addition, the method obtained a good result from a data set collected that included a different growing period of crops by changing the standardized method from StandardScaler to Scale , where the RMSE is 0.0501 and R 2 is 0.3204. This indicates the good generalization capability of this method. In conclusion, the proposed method solves the two questions effectively and provides a potential way for long-time or large-scale soil moisture monitoring with much less in situ measurements. Numéro de notice : A2020-235 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950321 date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950321 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94981
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3190 - 3201[article]Combining radar and optical imagery to map oil palm plantations in Sumatra, Indonesia, using the Google Earth Engine / Thuan Sarzynski in Remote sensing, vol 12 n° 7 (April 2020)
![]()
[article]
Titre : Combining radar and optical imagery to map oil palm plantations in Sumatra, Indonesia, using the Google Earth Engine Type de document : Article/Communication Auteurs : Thuan Sarzynski, Auteur ; Xingli Giam, Auteur ; Luis Carrasco, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] Elaeis guineensis
[Termes descripteurs IGN] Google Earth Engine
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] Sumatra
[Termes descripteurs IGN] surveillance agricole
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Monitoring the expansion of commodity crops in the tropics is crucial to safeguard forests for biodiversity and ecosystem services. Oil palm (Elaeis guineensis) is one such crop that is a major driver of deforestation in Southeast Asia. We evaluated the use of a semi-automated approach with random forest as a classifier and combined optical and radar datasets to classify oil palm land-cover in 2015 in Sumatra, Indonesia, using Google Earth Engine. We compared our map with two existing remotely-sensed oil palm land-cover products that utilized visual and semi-automated approaches for the same year. We evaluated the accuracy of oil palm land-cover classification from optical (Landsat), radar (synthetic aperture radar (SAR)), and combined optical and radar satellite imagery (Combined). Combining Landsat and SAR data resulted in the highest overall classification accuracy (84%) and highest producer’s and user’s accuracy for oil palm classification (84% and 90%, respectively). The amount of oil palm land-cover in our Combined map was closer to official government statistics than the two existing land-cover products that used visual interpretation techniques. Our analysis of the extents of disagreement in oil palm land-cover indicated that our map had comparable accuracy to one of them and higher accuracy than the other. Our results demonstrate that a combination of optical and radar data outperforms the use of optical-only or radar-only datasets for oil palm classification and that our technique of preprocessing and classifying combined optical and radar data in the Google Earth Engine can be applied to accurately monitor oil-palm land-cover in Southeast Asia. Numéro de notice : A2020-455 Affiliation des auteurs : non IGN Nature : Article DOI : 10.3390/rs12071220 date de publication en ligne : 10/04/2020 En ligne : https://doi.org/10.3390/rs12071220 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95554
in Remote sensing > vol 12 n° 7 (April 2020)[article]Combination of linear regression lines to understand the response of Sentinel-1 dual polarization SAR data with crop phenology - case study in Miyazaki, Japan / Emal Wali in Remote sensing, vol 12 n° 1 (January 2020)
![]()
[article]
Titre : Combination of linear regression lines to understand the response of Sentinel-1 dual polarization SAR data with crop phenology - case study in Miyazaki, Japan Type de document : Article/Communication Auteurs : Emal Wali, Auteur ; Masahiro Tasumi, Auteur ; Masao Moriyama, Auteur Année de publication : 2020 Article en page(s) : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] biomasse
[Termes descripteurs IGN] coefficient de rétrodiffusion
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] indice foliaire
[Termes descripteurs IGN] Japon
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] rizière
[Termes descripteurs IGN] surveillance agricole
[Termes descripteurs IGN] variable biophysique (végétation)Résumé : (auteur) This study investigated the relationship between backscattering coefficients of a synthetic aperture radar (SAR) and the four biophysical parameters of rice crops—plant height, green vegetation cover, leaf area index, and total dry biomass. A paddy rice field in Miyazaki, Japan was studied from April to July of 2018, which is the rice cultivation season. The SAR backscattering coefficients were provided by Sentinel-1 satellite. Backscattering coefficients of two polarization settings—VH (vertical transmitting, horizontal receiving) and VV (vertical transmitting, vertical receiving)—were investigated. Plant height, green vegetation cover, leaf area index, and total dry biomass were measured at ground level, on the same dates as satellite image acquisition. Polynomial regression lines indicated relationships between backscattering coefficients and plant biophysical parameters of the rice crop. The biophysical parameters had stronger relationship to VH than to VV polarization. A disadvantage of adopting polynomial regression equations is that the equation can have two biophysical parameter solutions for a particular backscattering coefficient value, which prevents simple conversion from backscattering coefficients to plant biophysical parameters. To overcome this disadvantage, the relationships between backscattering coefficients and the plant biophysical parameters were expressed using a combination of two linear regression lines, one line for the first sub-period and the other for the second sub-period during the entire cultivation period. Following this approach, all four plant biophysical parameters were accurately estimated from the SAR backscattering coefficient, especially with VH polarization, from the date of transplanting to about two months, until the mid-reproductive stage. However, backscattering coefficients saturate after two months from the transplanting, and became insensitive to the further developments in plant biophysical parameters. This research indicates that SAR can effectively and accurately monitor rice crop biophysical parameters, but only up to the mid reproductive stage. Numéro de notice : A2020-223 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12010189 date de publication en ligne : 05/01/2020 En ligne : https://doi.org/10.3390/rs12010189 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94936
in Remote sensing > vol 12 n° 1 (January 2020) . - 17 p.[article]Toward global soil moisture monitoring with sentinel-1 : harnessing assets and overcoming obstacles / Bernhard Bauer-Marschallinger in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
![]()
[article]
Titre : Toward global soil moisture monitoring with sentinel-1 : harnessing assets and overcoming obstacles Type de document : Article/Communication Auteurs : Bernhard Bauer-Marschallinger, Auteur ; Vahid Freeman, Auteur ; Senmao Cao, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 520 - 539 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] bilan hydrique
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] Italie
[Termes descripteurs IGN] Ombrie (Italie)
[Termes descripteurs IGN] surveillance agricole
[Termes descripteurs IGN] surveillance météorologiqueRésumé : (Auteur) Soil moisture is a key environmental variable, important to, e.g., farmers, meteorologists, and disaster management units. Here, we present a method to retrieve surface soil moisture (SSM) from the Sentinel-1 (S-1) satellites, which carry C-band Synthetic Aperture Radar (CSAR) sensors that provide the richest freely available SAR data source so far, unprecedented in accuracy and coverage. Our SSM retrieval method, adapting well-established change detection algorithms, builds the first globally deployable soil moisture observation data set with 1-km resolution. This paper provides an algorithm formulation to be operated in data cube architectures and high-performance computing environments. It includes the novel dynamic Gaussian upscaling method for spatial upscaling of SAR imagery, harnessing its field-scale information and successfully mitigating effects from the SAR's high signal complexity. Also, a new regression-based approach for estimating the radar slope is defined, coping with Sentinel-1's inhomogeneity in spatial coverage. We employ the S-1 SSM algorithm on a 3-year S-1 data cube over Italy, obtaining a consistent set of model parameters and product masks, unperturbed by coverage discontinuities. An evaluation of therefrom generated S-1 SSM data, involving a 1-km soil water balance model over Umbria, yields high agreement over plains and agricultural areas, with low agreement over forests and strong topography. While positive biases during the growing season are detected, the excellent capability to capture small-scale soil moisture changes as from rainfall or irrigation is evident. The S-1 SSM is currently in preparation toward operational product dissemination in the Copernicus Global Land Service. Numéro de notice : A2019-108 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2858004 date de publication en ligne : 22/08/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2858004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92425
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 1 (January 2019) . - pp 520 - 539[article]Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier / Huanxue Zhang in Geocarto international, vol 33 n° 10 (October 2018)
PermalinkCrop-rotation structured classification using multi-source sentinel images and LPIS for crop type mapping / Simon Bailly (2018)
PermalinkDétection de changement par imagerie radar sur les zones naturelles et agricoles en milieu tropical / Jérôme Lebreton (2018)
PermalinkTowards a multi-scale approach for an Earth observation-based assessment of natural resource exploitation in conflict regions / Elisabeth Schoepfer in Geocarto international, vol 32 n° 10 (October 2017)
PermalinkUnderstanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications / Amanda Veloso in Remote sensing of environment, vol 199 (15 September 2017)
PermalinkOptical remotely sensed time series data for land cover classification: A review / Cristina Gómez in ISPRS Journal of photogrammetry and remote sensing, vol 116 (June 2016)
PermalinkMonitoring of water stress in wheat using multispectral indices derived from Landsat-TM / Nitika Dangwal in Geocarto international, vol 31 n° 5 - 6 (May - June 2016)
PermalinkTemporal MODIS data for identification of wheat crop using noise clustering soft classification approach / Priyadarshi Upadhyay in Geocarto international, vol 31 n° 3 - 4 (March - April 2016)
PermalinkAutomated annual cropland mapping using knowledge-based temporal features / François Waldner in ISPRS Journal of photogrammetry and remote sensing, vol 110 (December 2015)
PermalinkNote technique : note sur l’utilisation du logiciel CROP-VGT appliqué aux images NDVI du capteur SPOT-Végétation / Natacha Volto in Photo interpretation, European journal of applied remote sensing, vol 51 n° 1 (janvier 2015)
Permalink