Descripteur
Termes descripteurs IGN > 1- Candidats > surveillance de la végétation
surveillance de la végétation |



Etendre la recherche sur niveau(x) vers le bas
Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics / Jasper A. Slingsby in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics Type de document : Article/Communication Auteurs : Jasper A. Slingsby, Auteur ; Glenn R. Moncrieff, Auteur ; Adam M. Wilson, Auteur Année de publication : 2020 Article en page(s) : pp 15 - 25 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] biodiversité
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] écosystème
[Termes descripteurs IGN] incendie
[Termes descripteurs IGN] internet interactif
[Termes descripteurs IGN] Le Cap
[Termes descripteurs IGN] milieu naturel
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] surveillance de la végétation
[Termes descripteurs IGN] surveillance écologiqueRésumé : (auteur) Managing fire, water, biodiversity and carbon stocks can greatly benefit from early warning of changes in the state of vegetation. While near-real time tools to detect forest change based on satellite remote sensing exist, these ecosystems have relatively stable natural vegetation dynamics. Open (i.e. non-forest) ecosystems like grasslands, savannas and shrublands are more challenging as they show complex natural dynamics due to factors such as fire, postfire recovery, greater contribution of bare soil to observed vegetation indices, as well as high sensitivity to rainfall and strong seasonality. Tools to aid the management of open ecosystems are desperately required as they dominate much of the globe and harbour substantial biodiversity and carbon. We present an innovative approach that overcomes the difficulties posed by open ecosystems by using a spatio-temporal hierarchical Bayesian model that uses data on climate, topography, soils and fire history to generate ecological forecasts of the expected land surface signal under natural conditions. This allows us to monitor and detect abrupt or gradual changes in the state of an ecosystem in near-real time by identifying areas where the observed vegetation signal has deviated from the expected natural variation. We apply our approach to a case study from the hyperdiverse fire-dependent African shrubland, the fynbos of the Cape Floristic Region, a Global Biodiversity Hotspot and UNESCO World Heritage Site that faces a number of threats to vegetation health and ecosystem function. The case study demonstrates that our approach is useful for identifying a range of change agents such as fire, alien plant species invasions, drought, pathogen outbreaks and clearing of vegetation. We describe and provide our full workflow, including an interactive web application. Our approach is highly versatile, allowing us to collect data on the impacts of change agents for research in ecology and earth system science, and to predict aspects of ecosystem structure and function such as biomass, fire return interval and the influence of vegetation on hydrology Numéro de notice : A2020-349 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.017 date de publication en ligne : 05/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95231
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 15 - 25[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Towards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa / Cecilia Masemola in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Towards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa Type de document : Article/Communication Auteurs : Cecilia Masemola, Auteur ; Moses Azong Cho, Auteur ; Abel Ramoelo, Auteur Année de publication : 2020 Article en page(s) : pp 153 - 168 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Acacia (genre)
[Termes descripteurs IGN] Afrique du sud (état)
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] cartographie automatique
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] espèce exotique envahissante
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Leaf Area Index
[Termes descripteurs IGN] modèle de transfert radiatif
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] surveillance de la végétationRésumé : (auteur) Invasive alien plants (IAPs) threaten biodiversity and critical ecosystem services worldwide. There is, therefore, an urgent need to develop intervention measures to control the spread of IAPs. Efforts to control and monitor the spread of IAPs would require their current and detailed distribution over a large geographic area. Recently launched multispectral instrument on-board Sentinel-2 provides free data with good spatiotemporal and spectral resolution, compared to Landsat datasets. The Sentinel-2 dataset, therefore, can be a useful source of the IAPs spatial information required for detection and monitoring purposes. We combined Sentinel-2 data with a radiative transfer model to discriminate IAPs (Acacia mearnsii and Acacia dealbata) from surrounding native tree species in Van Reenen, KwaZulu-Natal, South Africa. The forward mode of combined PROSPECT leaf optical properties model and SAIL canopy bidirectional reflectance model, also referred to as PROSAIL was used to simulate reflectance corresponding to bands of Sentinel-MSI, while the PROSAIL model inversion retrieved leaf area index (LAI) and canopy chlorophyll contents (CCC) of the IAPs and native species. Both reflectance and retrieved properties were used to map the distribution of the species within the study area. Our results showed that A. mearnsii and A. dealbata could be accurately discriminated from the surrounding native trees using integrated PROSAIL Sentinel-2 based model. We found that CCC– and LAI-based (% accuracy = 92.8%, 91.4% for CCC and LAI, respectively) modelling produced a higher classification accuracy than field sampling-based modelling (Accuracy = 90.2% (IAP), 82.2% (NAT) and kappa coefficient = 0.84 (IAP), 0.78 (NAT)). Simulated bands corresponding to Sentinel-2 data, on the other hand, produced species maps comparable to field sampling-based maps. Overall, the integrated PROSAIL Sentinel-2 inversion approach proved suitable for detecting and mapping IAPs over a large area. Due to the high spatiotemporal coverage of Sentinel-2, satellite images, the model developed showed the potential to contribute to the IAPs monitoring systems. Numéro de notice : A2020-352 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.009 date de publication en ligne : 13/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.009 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95235
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 153 - 168[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches / S.M. Hamylton in International journal of applied Earth observation and geoinformation, vol 89 (July 2020)
![]()
[article]
Titre : Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches Type de document : Article/Communication Auteurs : S.M. Hamylton, Auteur ; R.H. Morris, Auteur ; R.C. Carvalho, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 102085 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] Nouvelle-Galles du Sud
[Termes descripteurs IGN] pesticide
[Termes descripteurs IGN] réserve naturelle
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance de la végétationRésumé : (auteur) We evaluate three approaches to mapping vegetation using images collected by an unmanned aerial vehicle (UAV) to monitor rehabilitation activities in the Five Islands Nature Reserve, Wollongong (Australia). Between April 2017 and July 2018, four aerial surveys of Big Island were undertaken to map changes to island vegetation following helicopter herbicide sprays to eradicate weeds, including the creeper Coastal Morning Glory (Ipomoea cairica) and Kikuyu Grass (Cenchrus clandestinus). The spraying was followed by a large scale planting campaign to introduce native plants, such as tussocks of Spiny-headed Mat-rush (Lomandra longifolia). Three approaches to mapping vegetation were evaluated, including: (i) a pixel-based image classification algorithm applied to the composite spectral wavebands of the images collected, (ii) manual digitisation of vegetation directly from images based on visual interpretation, and (iii) the application of a machine learning algorithm, LeNet, based on a deep learning convolutional neural network (CNN) for detecting planted Lomandra tussocks. The uncertainty of each approach was assessed via comparison against an independently collected field dataset. Each of the vegetation mapping approaches had a comparable accuracy; for a selected weed management and planting area, the overall accuracies were 82 %, 91 % and 85 % respectively for the pixel based image classification, the visual interpretation / digitisation and the CNN machine learning algorithm. At the scale of the whole island, statistically significant differences in the performance of the three approaches to mapping Lomandra plants were detected via ANOVA. The manual digitisation took a longer time to perform than others. The three approaches resulted in markedly different vegetation maps characterised by different digital data formats, which offered fundamentally different types of information on vegetation character. We draw attention to the need to consider how different digital map products will be used for vegetation management (e.g. monitoring the health individual species or a broader profile of the community). Where individual plants are to be monitored over time, a feature-based approach that represents plants as vector points is appropriate. The CNN approach emerged as a promising technique in this regard as it leveraged spatial information from the UAV images within the architecture of the learning framework by enforcing a local connectivity pattern between neurons of adjacent layers to incorporate the spatial relationships between features that comprised the shape of the Lomandra tussocks detected. Numéro de notice : A2020-716 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102085 date de publication en ligne : 03/03/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102085 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96287
in International journal of applied Earth observation and geoinformation > vol 89 (July 2020) . - n° 102085[article]Mapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery / Kasper Johansen in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
![]()
[article]
Titre : Mapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery Type de document : Article/Communication Auteurs : Kasper Johansen, Auteur ; Qibin Duan, Auteur ; Yu-Hsuan Tu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 28 - 40 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Australie
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] données multitemporelles
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] production végétale
[Termes descripteurs IGN] surveillance de la végétationRésumé : (auteur) Australia is one of the world’s largest producers of macadamia nuts. As macadamia trees can take up to 15 years to mature and produce maximum yield, it is important to optimize tree condition. Field based assessment of macadamia tree condition is time-consuming and often inconsistent. Using remotely sensed imagery may allow for faster, more extensive, and more consistent assessment of macadamia tree condition. To identify individual macadamia tree crowns, high spatial resolution imagery is required. Hence, the objective of this work was to develop and test an approach to map the condition of individual macadamia tree crowns using both multi-spectral Unmanned Aerial Vehicle (UAV) and WorldView-3 imagery for different macadamia varieties and three different sites located near Bundaberg, Australia. A random forest classifier, based on all available spectral bands and selected vegetation indices was used to predict five condition categories, ranging from excellent (category 1) to poor (category 5). Various combinations of the developed models were tested between the three sites and over time. The results showed that the multi-spectral WorldView-3 imagery produced the lowest out of bag (OOB) classification errors in most cases. However, for both the UAV and the WorldView-3 imagery, more than 98.5% of predicted macadamia condition categories were either correctly mapped or offset by a single category out of the five condition categories (excellent, good, moderate, fair and poor) for trees of the same variety and at one point in time. Multi-temporally, the WorldView-3 imagery performed better than the UAV data for predicting the condition of the same macadamia tree variety. Applying a model from one site to another site with the same macadamia tree variety produced OOB classification between 31.20 and 42.74%, but with >98.63% of trees predicted within a single condition category. Importantly, models trained based on one type of macadamia tree variety could not be successfully applied to a site with another variety. The developed classification models may be used as a decision and management support tool for the macadamia industry to inform management practices and improve on-demand irrigation, fertilization, and pest inspection at the individual tree level. Numéro de notice : A2020-277 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.01 date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95093
in ISPRS Journal of photogrammetry and remote sensing > vol 165 (July 2020) . - pp 28 - 40[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020071 SL Revue Centre de documentation Revues en salle Disponible 081-2020073 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Wheat leaf area index retrieval using RISAT-1 hybrid polarized SAR data / Thota Sivasankar in Geocarto international, Vol 35 n° 8 ([01/06/2020])
![]()
[article]
Titre : Wheat leaf area index retrieval using RISAT-1 hybrid polarized SAR data Type de document : Article/Communication Auteurs : Thota Sivasankar, Auteur ; Dheeraj Kumar, Auteur ; Hari Shanker Srivastava, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 905 - 915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] blé (céréale)
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Risat-1
[Termes descripteurs IGN] indice foliaire
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] régression non linéaire
[Termes descripteurs IGN] rétrodiffusion
[Termes descripteurs IGN] séparateur à vaste marge
[Termes descripteurs IGN] surveillance de la végétationRésumé : (auteur) Leaf Area Index (LAI) is a key parameter to characterize the canopy–atmosphere interface, where most of the energy fluxes exchange. Space-borne satellite images have shown their relevance for various applications including LAI retrieval over large areas. Although optical data have been used for this purpose in previous studies, the constraints to acquire optical data during extreme weather conditions due to the presence of clouds, haze, smoke etc. hinders its use for uninterrupted monitoring. This study aims to analyze the relationships of C-band RISAT-1 hybrid polarized SAR data (σ˚RH and σ˚RV) with wheat LAI. The results have shown the correlation coefficient (|r|) of 0.57 and 0.73 for RH and RV backscatter, respectively, using non-linear regression approach. It is also observed that the accuracy of LAI retrieval has been significantly improved with |r| and RMSE of 0.81 and 0.54 (m2/m2), respectively, by considering both RH and RV backscatter as inputs for support vector machine-based model. Numéro de notice : A2020-341 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10106049.2019.1566404 date de publication en ligne : 07/02/2019 En ligne : https://doi.org/10.1080/10106049.2019.1566404 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95219
in Geocarto international > Vol 35 n° 8 [01/06/2020] . - pp 905 - 915[article]Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database / Collin Homer in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
PermalinkDetection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis / T. Poblete in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
PermalinkRadar Vegetation Index for assessing cotton crop condition using RISAT-1 data / Dipanwita Haldar in Geocarto international, vol 35 n° 4 ([15/03/2020])
PermalinkPlant survival monitoring with UAVs and multispectral data in difficult access afforested areas / Maria Luz Gil-Docampo in Geocarto international, vol 35 n° 2 ([01/02/2020])
PermalinkThree-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering / Shangpeng Sun in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
PermalinkOn the joint exploitation of optical and SAR satellite imagery for grassland monitoring / Anatol Garioud (2020)
PermalinkPermalinkMise en oeuvre d'outils open source pour le suivi opérationnel de l'occupation des sols et de la déforestation à partir des données Sentinel radar optique : études de cas en Guyane et au Togo / Cédric Lardeux in Revue Française de Photogrammétrie et de Télédétection, n° 219-220 (juin - octobre 2019)
PermalinkPermalinkChallenges in grassland mowing event detection with multimodal Sentinel images / Anatol Garioud (2019)
Permalink