Descripteur
Documents disponibles dans cette catégorie (123)



Etendre la recherche sur niveau(x) vers le bas
A GIS-based study on the layout of the ecological monitoring system of the Grain for Green project in China / Ke Guo in Forests, vol 14 n° 1 (January 2023)
![]()
[article]
Titre : A GIS-based study on the layout of the ecological monitoring system of the Grain for Green project in China Type de document : Article/Communication Auteurs : Ke Guo, Auteur ; Xiang Niu, Auteur ; Bing Wang, Auteur Année de publication : 2023 Article en page(s) : n° 70 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse spatiale
[Termes IGN] carte thématique
[Termes IGN] Chine
[Termes IGN] climat
[Termes IGN] distribution spatiale
[Termes IGN] écologie forestière
[Termes IGN] écosystème forestier
[Termes IGN] surveillance écologique
[Termes IGN] système d'information géographiqueRésumé : (auteur) The Grain for Green Project (GGP) is an essential ecological system protection and restoration measure which can effectively improve the ecological environment. Constructing ecological monitoring system and obtaining ecological parameters can scientifically evaluate the ecological benefits of the GGP, consolidate the existing achievements, take the road of high-quality development, and promote the construction of a national ecological civilization. Firstly, an index system was constructed based on the factors driving forest ecosystem functions, involving climate (thermal and moisture conditions), vegetation types, and typical ecological zones. Then, GIS spatial analysis technology and the merging criteria index method were used to identify GGP ecological function monitoring zones. Finally, according to the scale of the project, the spatial distribution of existing stations, typical ecological zones, and the density of monitoring stations, the eco-efficiency monitoring stations, were arranged in an overall way, which constitutes the GGP ecological monitoring network. The results showed that the ecological function monitoring zones of GGP included 77 divisions, and 99 ecological monitoring stations (20 compatible level-1 stations, 31 compatible level-2 stations, 18 professional level-1 stations, and 30 professional level-2 stations) were arranged. Among them, 83 are located in national major ecosystem protection and restoration engineering areas (NMEPREA), 79 in national ecological fragile areas (NEFA), 41 in national ecological barrier areas (NEBA), and 58 in national key ecological function areas (NKEFA). The proportion of types of NMEPREA, NEFA, NEBA, and NKEFA covered by monitoring is 66.7%, 100%, 100%, and 76%, respectively. The ecological monitoring system of GGP can not only meet the monitoring needs of the GGP but also effectively monitor the effectiveness of protection and restoration of typical ecological zones. In addition, this study can provide a methodological basis for other countries or ecological projects to build a more scientific and reasonable ecological monitoring system. Numéro de notice : A2023-040 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article DOI : 10.3390/f14010070 Date de publication en ligne : 30/12/2022 En ligne : https://doi.org/10.3390/f14010070 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102326
in Forests > vol 14 n° 1 (January 2023) . - n° 70[article]Comparison of methods for the automatic classification of forest habitat types in the Southern Alps : Application to ecological data from the French national forest inventory / Charlotte Labit in Biodiversity & Conservation, vol 31 n° 13-14 (December 2022)
![]()
[article]
Titre : Comparison of methods for the automatic classification of forest habitat types in the Southern Alps : Application to ecological data from the French national forest inventory Type de document : Article/Communication Auteurs : Charlotte Labit, Auteur ; Ingrid Bonhême , Auteur ; Sébastien Delhaye
, Auteur
Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : pp 3257 - 3283 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Alpes-de-haute-provence (04)
[Termes IGN] Alpes-maritimes (06)
[Termes IGN] analyse comparative
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Drôme (26)
[Termes IGN] habitat (nature)
[Termes IGN] habitat forestier
[Termes IGN] incertitude des données
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] surveillance écologique
[Vedettes matières IGN] Inventaire forestierMots-clés libres : algorithm inspired by the habitat identification key used in the field Résumé : (auteur) The monitoring of habitats at plant association level, has been developed by the French-National Forest Inventory (NFI) progressively since 2011, whereas ecological and floristic data exist since the mid-1980s. The NFI habitat monitoring is the French tool of surveillance of forest habitats decreed by Natura 2000 Directive (article 11). Determination of plant association in NFI plots concerns all the habitats, whether they are of community interest or not. The objective of this study is to compare different methods of automatic classification of floristic and ecological surveys into forest habitat groups. Indeed, enriching the old surveys, which contain only ecological, floristic and trees data, with information on habitats would increase the accuracy of the calculated statistical results on habitats. The uncertainty of the attribution of a habitat outside the field (ex-situ) by experts was quantified by comparison with the determination in the field (in situ). This result was used as a benchmark to compare to the error rates obtained by two methods of automatic classification: an algorithm inspired by the habitat identification key used in the field and Random forest, a learning classification method. The classification performance was evaluated for three levels of habitat groupings. The results showed that the lower the level of clustering, the higher the error rate. Depending on the classification method used and the level of aggregation, the error rates varied between 5 and 15%. In all cases, the error rates were below the estimated uncertainty of the expert attribution of ex-situ habitat. Numéro de notice : A2022-696 Affiliation des auteurs : IGN+Ext (2020- ) Thématique : FORET/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10531-022-02487-6 Date de publication en ligne : 25/10/2022 En ligne : https://doi.org/10.1007/s10531-022-02487-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101980
in Biodiversity & Conservation > vol 31 n° 13-14 (December 2022) . - pp 3257 - 3283[article]Decision fusion of deep learning and shallow learning for marine oil spill detection / Junfang Yang in Remote sensing, vol 14 n° 3 (February-1 2022)
![]()
[article]
Titre : Decision fusion of deep learning and shallow learning for marine oil spill detection Type de document : Article/Communication Auteurs : Junfang Yang, Auteur ; Yi Ma, Auteur ; Yabin Hu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 666 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] analyse multiéchelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] hydrocarbure
[Termes IGN] image hyperspectrale
[Termes IGN] marée noire
[Termes IGN] milieu marin
[Termes IGN] pollution des mers
[Termes IGN] précision de la classification
[Termes IGN] sous ensemble flou
[Termes IGN] surveillance écologique
[Termes IGN] transformation en ondelettesRésumé : (auteur) Marine oil spills are an emergency of great harm and have become a hot topic in marine environmental monitoring research. Optical remote sensing is an important means to monitor marine oil spills. Clouds, weather, and light control the amount of available data, which often limit feature characterization using a single classifier and therefore difficult to accurate monitoring of marine oil spills. In this paper, we develop a decision fusion algorithm to integrate deep learning methods and shallow learning methods based on multi-scale features for improving oil spill detection accuracy in the case of limited samples. Based on the multi-scale features after wavelet transform, two deep learning methods and two classical shallow learning algorithms are used to extract oil slick information from hyperspectral oil spill images. The decision fusion algorithm based on fuzzy membership degree is introduced to fuse multi-source oil spill information. The research shows that oil spill detection accuracy using the decision fusion algorithm is higher than that of the single detection algorithms. It is worth noting that oil spill detection accuracy is affected by different scale features. The decision fusion algorithm under the first-level scale features can further improve the accuracy of oil spill detection. The overall classification accuracy of the proposed method is 91.93%, which is 2.03%, 2.15%, 1.32%, and 0.43% higher than that of SVM, DBN, 1D-CNN, and MRF-CNN algorithms, respectively. Numéro de notice : A2022-125 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14030666 Date de publication en ligne : 30/01/2022 En ligne : https://doi.org/10.3390/rs14030666 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99688
in Remote sensing > vol 14 n° 3 (February-1 2022) . - n° 666[article]Cloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 / Dimitris Poursanidis in Remote sensing in ecology and conservation, vol 7 n° 2 (June 2021)
![]()
[article]
Titre : Cloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 Type de document : Article/Communication Auteurs : Dimitris Poursanidis, Auteur ; Dimosthenis Traganos, Auteur ; Luisa Teixeira, Auteur ; Aurélie Shapiro, Auteur ; Lara Muaves, Auteur Année de publication : 2021 Article en page(s) : pp 275 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] écosystème
[Termes IGN] Google Earth Engine
[Termes IGN] habitat (nature)
[Termes IGN] image Sentinel-MSI
[Termes IGN] Mozambique
[Termes IGN] récif corallien
[Termes IGN] réserve naturelle
[Termes IGN] surveillance écologiqueRésumé : (auteur) The lack of detailed spatial information on coastal resources, notably shallow water coral reefs and associated benthic habitats, impedes our ability to protect and manage them in the face of global climate change and anthropogenic impacts. Here, we develop a semi-automated workflow in the cloud that uses freely available Sentinel-2 data from the European Space Agency (ESA) Copernicus programme to derive information on near-shore coral reef habitats in the Quirimbas National Park (QNP), a recently declared biosphere reserve in northern Mozambique. We use an end-to-end cloud-based framework within the Google Earth Engine cloud geospatial platform to process imagery from raw pixels to cloud-free composites which are corrected for glint and surface artefacts, water column and derived estimated depth and then classified into four benthic habitats. Using independent training and validation data, we apply three supervised classification algorithms: random forests (RF), support vector machine (SVM) and classification and regression trees (CART). Our results show that random forests are the most accurate supervised algorithm with over 82% overall accuracy. We mapped over 105 000 ha of shallow water habitat inside the protected area, of which 18% are dominated by coral and hardbottom; 27.5% are seagrass and submerged aquatic vegetation and another 23.4% are soft and sandy substrates, and the remaining area is optically deep water. We employ satellite-derived bathymetry to assess slope, bathymetric position, rugosity and underwater topography of these habitats. Finally, a spectral unmixing model provides further sub-pixel–level information of habitats with the potential to monitor changes over time. This effort provides the first, consistent and repeatable and also scalable coastal information system for an east African tropical marine protected area, which hosts shallow-water ecosystems which are of great significance to local communities and building resilience towards climate change. Numéro de notice : A2021-733 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1002/rse2.187 Date de publication en ligne : 29/11/2020 En ligne : https://doi.org/10.1002/rse2.187 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98679
in Remote sensing in ecology and conservation > vol 7 n° 2 (June 2021) . - pp 275 - 291[article]Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics / Jasper A. Slingsby in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics Type de document : Article/Communication Auteurs : Jasper A. Slingsby, Auteur ; Glenn R. Moncrieff, Auteur ; Adam M. Wilson, Auteur Année de publication : 2020 Article en page(s) : pp 15 - 25 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] approche hiérarchique
[Termes IGN] biodiversité
[Termes IGN] classification bayesienne
[Termes IGN] détection de changement
[Termes IGN] écosystème
[Termes IGN] incendie
[Termes IGN] internet interactif
[Termes IGN] Le Cap
[Termes IGN] milieu naturel
[Termes IGN] modèle dynamique
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] surveillance de la végétation
[Termes IGN] surveillance écologiqueRésumé : (auteur) Managing fire, water, biodiversity and carbon stocks can greatly benefit from early warning of changes in the state of vegetation. While near-real time tools to detect forest change based on satellite remote sensing exist, these ecosystems have relatively stable natural vegetation dynamics. Open (i.e. non-forest) ecosystems like grasslands, savannas and shrublands are more challenging as they show complex natural dynamics due to factors such as fire, postfire recovery, greater contribution of bare soil to observed vegetation indices, as well as high sensitivity to rainfall and strong seasonality. Tools to aid the management of open ecosystems are desperately required as they dominate much of the globe and harbour substantial biodiversity and carbon. We present an innovative approach that overcomes the difficulties posed by open ecosystems by using a spatio-temporal hierarchical Bayesian model that uses data on climate, topography, soils and fire history to generate ecological forecasts of the expected land surface signal under natural conditions. This allows us to monitor and detect abrupt or gradual changes in the state of an ecosystem in near-real time by identifying areas where the observed vegetation signal has deviated from the expected natural variation. We apply our approach to a case study from the hyperdiverse fire-dependent African shrubland, the fynbos of the Cape Floristic Region, a Global Biodiversity Hotspot and UNESCO World Heritage Site that faces a number of threats to vegetation health and ecosystem function. The case study demonstrates that our approach is useful for identifying a range of change agents such as fire, alien plant species invasions, drought, pathogen outbreaks and clearing of vegetation. We describe and provide our full workflow, including an interactive web application. Our approach is highly versatile, allowing us to collect data on the impacts of change agents for research in ecology and earth system science, and to predict aspects of ecosystem structure and function such as biomass, fire return interval and the influence of vegetation on hydrology Numéro de notice : A2020-349 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.017 Date de publication en ligne : 05/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95231
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 15 - 25[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Predicting biomass dynamics at the national extent from digital aerial photogrammetry / Bronwyn Price in International journal of applied Earth observation and geoinformation, vol 90 (August 2020)
PermalinkComplete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China / Kun Tan in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
PermalinkDéveloppement de la photogrammétrie et d'analyses d'images pour l'étude et le suivi d'habitats marins / Guilhem Marre (2020)
PermalinkPermalinkCaractériser et suivre qualitativement et quantitativement les haies et le bocage en France / Sophie Morin in Sciences, eaux & territoires, n° 30 (octobre 2019)
PermalinkPermalinkPermalinkPermalinkFuzzy modelling of growth potential in forest development simulation / Damjan Strnad in Ecological Informatics, vol 48 (November 2018)
PermalinkHackAIR : towards raising awareness about air quality in Europe by developing a collective online platform / Evangelos Kosmidis in ISPRS International journal of geo-information, vol 7 n° 5 (May 2018)
Permalink