Descripteur
Documents disponibles dans cette catégorie (232)



Etendre la recherche sur niveau(x) vers le bas
The effect of map label language on the visual search of cartographic point symbols / Paweł Cybulski in Cartography and Geographic Information Science, vol 49 n° 3 (May 2022)
![]()
[article]
Titre : The effect of map label language on the visual search of cartographic point symbols Type de document : Article/Communication Auteurs : Paweł Cybulski, Auteur ; Vassilios Krassanakis, Auteur Année de publication : 2022 Article en page(s) : pp 189 - 204 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] détection de cible
[Termes IGN] étiquette
[Termes IGN] langage cartographique
[Termes IGN] langue
[Termes IGN] lecture de carte
[Termes IGN] oculométrie
[Termes IGN] sémiologie graphique
[Termes IGN] symbole graphique
[Termes IGN] visualisation cartographique
[Vedettes matières IGN] CartologieRésumé : (auteur) The present study aims to examine how the visual search for cartographic symbols is affected by the language of map labels. More specifically, we explore the influence of native language in the performance of a visual search map task which is referred to target point symbol detection. The main research hypothesis is that the relative position of the target symbols plays a significant role in the visual search process, although labels language impacts reaction time. In a controlled laboratory experiment with 38 participants and eye tracking technology, we used maps with labels in participants’ native language (Polish) and in Chinese, which participants could neither read nor write. We find that the detection of target symbols with Chinese labels is faster when the symbol’s location is peripheral. On the other hand, faster detection of target symbols with labels in participants’ native language favors central location. It turned out that having noticed the target symbol, participants fixated on the native language label. For Chinese labels, having seen the target symbol, participants did not fixate on the label. It also turned out that when participants searched for a target symbol located in the peripheral zone, more visual attention was in this zone. However, when the target symbol’s location was central, the participants’ visual attention focused mostly on the central zone. This confirms the significant role of the location of cartographic symbols in the visual search process. Numéro de notice : A2022- 292 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2021.2007419 Date de publication en ligne : 16/12/2021 En ligne : https://doi.org/10.1080/15230406.2021.2007419 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100340
in Cartography and Geographic Information Science > vol 49 n° 3 (May 2022) . - pp 189 - 204[article]Meta-learning based hyperspectral target detection using siamese network / Yulei Wang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
![]()
[article]
Titre : Meta-learning based hyperspectral target detection using siamese network Type de document : Article/Communication Auteurs : Yulei Wang, Auteur ; Xi Chen, Auteur ; Fengchao Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5527913 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] détection de cible
[Termes IGN] espace euclidien
[Termes IGN] filtrage numérique d'image
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal siamois
[Termes IGN] tripletRésumé : (auteur) When predicting data for which limited supervised information is available, hyperspectral target detection methods based on deep transfer learning expect that the network will not require considerable retraining to generalize to unfamiliar application contexts. Meta-learning is an effective and practical framework for solving this problem in deep learning. This article proposes a new meta-learning based hyperspectral target detection using Siamese network (MLSN). First, a deep residual convolution feature embedding module is designed to embed spectral vectors into the Euclidean feature space. Then, the triplet loss is used to learn the intraclass similarity and interclass dissimilarity between spectra in embedding feature space by using the known labeled source data on the designed three-channel Siamese network for meta-training. The learned meta-knowledge is updated with the prior target spectrum through a designed two-channel Siamese network to quickly adapt to the new detection task. It should be noted that the parameters and structure of the deep residual convolution embedding modules of each channel in the Siamese network are identical. Finally, the spatial information is combined, and the detection map of the two-channel Siamese network is processed by the guiding image filtering and morphological closing operation, and a final detection result is obtained. Based on the experimental analysis of six real hyperspectral image datasets, the proposed MLSN has shown its excellent comprehensive performance. Numéro de notice : A2022-381 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3169970 Date de publication en ligne : 22/04/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3169970 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100649
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 4 (April 2022) . - n° 5527913[article]Automatic extraction of damaged houses by earthquake based on improved YOLOv5: A case study in Yangbi / Yafei Jing in Remote sensing, vol 14 n° 2 (January-2 2022)
![]()
[article]
Titre : Automatic extraction of damaged houses by earthquake based on improved YOLOv5: A case study in Yangbi Type de document : Article/Communication Auteurs : Yafei Jing, Auteur ; Yuhuan Ren, Auteur ; Yalan Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 382 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] détection du bâti
[Termes IGN] dommage matériel
[Termes IGN] extraction automatique
[Termes IGN] image captée par drone
[Termes IGN] orthoimage
[Termes IGN] séisme
[Termes IGN] Yunnan (Chine)Résumé : (auteur) Efficiently and automatically acquiring information on earthquake damage through remote sensing has posed great challenges because the classical methods of detecting houses damaged by destructive earthquakes are often both time consuming and low in accuracy. A series of deep-learning-based techniques have been developed and recent studies have demonstrated their high intelligence for automatic target extraction for natural and remote sensing images. For the detection of small artificial targets, current studies show that You Only Look Once (YOLO) has a good performance in aerial and Unmanned Aerial Vehicle (UAV) images. However, less work has been conducted on the extraction of damaged houses. In this study, we propose a YOLOv5s-ViT-BiFPN-based neural network for the detection of rural houses. Specifically, to enhance the feature information of damaged houses from the global information of the feature map, we introduce the Vision Transformer into the feature extraction network. Furthermore, regarding the scale differences for damaged houses in UAV images due to the changes in flying height, we apply the Bi-Directional Feature Pyramid Network (BiFPN) for multi-scale feature fusion to aggregate features with different resolutions and test the model. We took the 2021 Yangbi earthquake with a surface wave magnitude (Ms) of 6.4 in Yunan, China, as an example; the results show that the proposed model presents a better performance, with the average precision (AP) being increased by 9.31% and 1.23% compared to YOLOv3 and YOLOv5s, respectively, and a detection speed of 80 FPS, which is 2.96 times faster than YOLOv3. In addition, the transferability test for five other areas showed that the average accuracy was 91.23% and the total processing time was 4 min, while 100 min were needed for professional visual interpreters. The experimental results demonstrate that the YOLOv5s-ViT-BiFPN model can automatically detect damaged rural houses due to destructive earthquakes in UAV images with a good performance in terms of accuracy and timeliness, as well as being robust and transferable. Numéro de notice : A2022-104 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14020382 Date de publication en ligne : 14/01/2022 En ligne : https://doi.org/10.3390/rs14020382 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99577
in Remote sensing > vol 14 n° 2 (January-2 2022) . - n° 382[article]Flood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
![]()
[article]
Titre : Flood susceptibility mapping using meta-heuristic algorithms Type de document : Article/Communication Auteurs : Alireza Arabameri, Auteur ; Amir Seyed Danesh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 949 - 974 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme génétique
[Termes IGN] base de données localisées
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Google Earth
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] optimisation par essaim de particules
[Termes IGN] SAGA GIS
[Termes IGN] séparateur à vaste marge
[Termes IGN] traitement de données localisées
[Termes IGN] vulnérabilité
[Termes IGN] zone à risqueRésumé : (auteur) Flood is a common global natural hazard, and detailed flood susceptibility maps for specific watersheds are important for flood management measures. We compute the flood susceptibility map for the Kaiser watershed in Iran using machine learning models such as support vector machine (SVM), Particle swarm optimization (PSO), and genetic algorithm (GA) along with ensembles (PSO-GA and SVM-GA). The application of such machine learning models in flood susceptibility assessment and mapping is analyzed, and future research suggestions are presented. The model of flood susceptibility model was constructed based on fifteen causatives: slope, slope aspect, elevation, plan curvature, land use, and land cover, normalize differences vegetation index (NDVI), convergence index (CI), topographical wetness index (TWI), topographic positioning Index (TPI), drainage density (DD), distance to stream, terrain ruggedness index (TRI), terrain surface texture (TST), geology and stream power index (SPI) and flood inventory data which later is divided by 70% for training the model and 30% for validated the model. The model output was evaluated through sensitivity, specificity, accuracy, precision, Cohen Kappa, F-score, and receiver operating curve (ROC). The evaluation of flood susceptibility mapping through the receiver operating curve method along with flood density shows robust results from support vector machine (0.839), particle swarm optimization (0.851), genetic algorithm (0.874), SVM-GA (0.886), and PSO-GA (0.902). Compared have done with some methods commonly used in this susceptibility assessment. A high-quality, informative database is essential for the classification of flood types in flood susceptibility mapping that is very important and helpful to improve the model performances. The performance of the ensemble PSO-GA is better than that of the machine learning model, yielding a high degree of accuracy (AUC-0.902%). Our approach, therefore, provides a novel method for flood susceptibility studies in other watersheds. Numéro de notice : A2022-300 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/19475705.2022.2060138 Date de publication en ligne : 11/04/2022 En ligne : https://doi.org/10.1080/19475705.2022.2060138 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100383
in Geomatics, Natural Hazards and Risk > vol 13 n° 1 (2022) . - pp 949 - 974[article]Geographically masking addresses to study COVID-19 clusters / Walid Houfaf-Khoufaf in Cartography and Geographic Information Science, vol 49 n° inconnu (2022)
![]()
[article]
Titre : Geographically masking addresses to study COVID-19 clusters Type de document : Article/Communication Auteurs : Walid Houfaf-Khoufaf, Auteur ; Guillaume Touya , Auteur
Année de publication : 2022 Projets : 1-Pas de projet / Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] adresse postale
[Termes IGN] anonymisation
[Termes IGN] carte sanitaire
[Termes IGN] classification barycentrique
[Termes IGN] surveillance sanitaire
[Termes IGN] traitement de données localiséesRésumé : (auteur) The spatio-temporal analysis of cases is a good way an epidemic, and the recent COVID-19 pandemic unfortunately generated a huge amount of data. But analysing this raw data, with for instance the address of the people who contracted COVID-19, raises some privacy issues, and geomasking is necessary to preserve both people privacy and the spatial accuracy required for analysis. This paper proposes dierent geomasking techniques adapted to this COVID-19 data. Methods: Different techniques are adapted from the literature, and tested on a synthetic dataset mimicking the COVID-19 spatio-temporal spreading in Paris and a more rural nearby region. Theses techniques are assessed in terms of k-anonymity and cluster preservation. Results: Three adapted geomasking techniques are proposed: aggregation, bimodal gaussian perturbation, and simulated crowding. All three can be useful in different use cases, but the bimodal gaussian perturbation is the overall best techniques, and the simulated crowding is the most promising one, provided some improvements are introduced to avoid points with a low k-anonymity. Conclusions: It is possible to use geomasking techniques on addresses of people who caught COVID-19, while preserving the important spatial patterns. Numéro de notice : A2021-065 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers RSquare Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2021.1977709 Date de publication en ligne : 08/10/2021 En ligne : https://doi.org/10.1080/15230406.2021.1977709 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96857
in Cartography and Geographic Information Science > vol 49 n° inconnu (2022)[article]Introduction à la géomatique pour le statisticien : quelques concepts et outils innovants de gestion, traitement et diffusion de l’information spatiale / François Sémécurbe (2022)
PermalinkPermalinkSTC-Det: A slender target detector combining shadow and target information in optical satellite images / Zhaoyang Huang in Remote sensing, vol 13 n° 20 (October-2 2021)
PermalinkSpatial interpolation of mobile positioning data for population statistics / Anto Aasa in Journal of location-based services, vol 15 n° 4 ([01/10/2021])
PermalinkConiferous and broad-leaved forest distinguishing using L-band polarimetric SAR data / Fang Shang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
PermalinkVehicle detection in very-high-resolution remote sensing images based on an anchor-free detection model with a more precise foveal area / Xungen Li in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
PermalinkImproving human mobility identification with trajectory augmentation / Fan Zhou in Geoinformatica [en ligne], vol 25 n° 3 (July 2021)
PermalinkTarget-constrained interference-minimized band selection for hyperspectral target detection / Xiaodi Shang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
PermalinkUsing information entropy and a multi-layer neural network with trajectory data to identify transportation modes / Qingying Yu in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
PermalinkRobust detection of non-overlapping ellipses from points with applications to circular target extraction in images and cylinder detection in point clouds / Reza Maalek in ISPRS Journal of photogrammetry and remote sensing, vol 176 (June 2021)
Permalink