Descripteur
Termes IGN > sciences humaines et sociales > géographie humaine > mobilité > trajet (mobilité)
trajet (mobilité)Voir aussi |
Documents disponibles dans cette catégorie (55)



Etendre la recherche sur niveau(x) vers le bas
HiPerMovelets: high-performance movelet extraction for trajectory classification / Tarlis Tortelli Portela in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
![]()
[article]
Titre : HiPerMovelets: high-performance movelet extraction for trajectory classification Type de document : Article/Communication Auteurs : Tarlis Tortelli Portela, Auteur ; Jonata Tyska Carvalho, Auteur ; Vania Bogorny, Auteur Année de publication : 2022 Article en page(s) : pp 1012 - 1036 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification
[Termes IGN] exploration de données géographiques
[Termes IGN] jeu de données localisées
[Termes IGN] trace numérique
[Termes IGN] trajet (mobilité)Résumé : (auteur) In the last decade, trajectory classification has received significant attention. The vast amount of data generated on social media, the use of sensor networks, IOT devices and other Internet-enabled sources allowed the semantic enrichment of mobility data, making the classification task more challenging. Existing trajectory classification methods have mainly considered space, time and numerical data, ignoring the semantic dimensions. Only recently proposed methods as Movelets and MASTERMovelets can handle all types of dimensions. MASTERMovelets is the only method that automatically discovers the best dimension combination and subtrajectory size for trajectory classification. However, although it outperformed the state-of-the-art in terms of accuracy, MASTERMovelets is computationally expensive and results in a high dimensionality problem, which makes it unfeasible for most real trajectory datasets that contain a big volume of data. To overcome this problem and enable the application of the movelets approach on large datasets, in this paper we propose a new high-performance method for extracting movelets and classifying trajectories, called HiPerMovelets (High-performance Movelets). Experimental results show that HiPerMovelets is 10 times faster than MASTERMovelets, reduces the high-dimensionality problem, is more scalable, and presents a high classification accuracy in all evaluated datasets with both raw and semantic trajectories. Numéro de notice : A2022-332 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2021.2018593 Date de publication en ligne : 03/01/2022 En ligne : https://doi.org/10.1080/13658816.2021.2018593 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100608
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 1012 - 1036[article]SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows / Qiliang Liu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows Type de document : Article/Communication Auteurs : Qiliang Liu, Auteur ; Jie Yang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 253 - 279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] classification barycentrique
[Termes IGN] flux
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] mobilité urbaine
[Termes IGN] noeud
[Termes IGN] origine - destination
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau routier
[Termes IGN] taxi
[Termes IGN] trajet (mobilité)Résumé : (auteur) Identifying clusters from individual origin–destination (OD) flows is vital for investigating spatial interactions and flow mapping. However, detecting arbitrarily-shaped and non-uniform flow clusters from network-constrained OD flows continues to be a challenge. This study proposes a shared nearest-neighbor-based clustering method (SNN_flow) for inhomogeneous OD flows constrained by a road network. To reveal clusters of varying shapes and densities, a normalized density for each OD flow is defined based on the concept of shared nearest-neighbor, and flow clusters are constructed using the density-connectivity mechanism. To handle large amounts of disaggregated OD flows, an efficient method for searching the network-constrained k-nearest flows is developed based on a local road node distance matrix. The parameters of SNN_flow are statistically determined: the density threshold is modeled as a significance level of a significance test, and the number of nearest neighbors is estimated based on the variance of the kth nearest distance. SNN_flow is compared with three state-of-the-art methods using taxicab trip data in Beijing. The results show that SNN_flow outperforms existing methods in identifying flow clusters with irregular shapes and inhomogeneous distributions. The clusters identified by SNN_flow can reveal human mobility patterns in Beijing. Numéro de notice : A2022-163 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1899184 Date de publication en ligne : 16/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1899184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99786
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 253 - 279[article]Pedestrian trajectory prediction with convolutional neural networks / Simone Zamboni in Pattern recognition, vol 121 (January 2022)
![]()
[article]
Titre : Pedestrian trajectory prediction with convolutional neural networks Type de document : Article/Communication Auteurs : Simone Zamboni, Auteur ; Zekarias Tilahun Kefato, Auteur ; Sarunas Girdzijauskas, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108252 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] distance euclidienne
[Termes IGN] filtre de Gauss
[Termes IGN] itinéraire piétionnier
[Termes IGN] modèle de simulation
[Termes IGN] navigation pédestre
[Termes IGN] piéton
[Termes IGN] prévision à court terme
[Termes IGN] réseau social
[Termes IGN] trajet (mobilité)Résumé : (auteur) Predicting the future trajectories of pedestrians is a challenging problem that has a range of application, from crowd surveillance to autonomous driving. In literature, methods to approach pedestrian trajectory prediction have evolved, transitioning from physics-based models to data-driven models based on recurrent neural networks. In this work, we propose a new approach to pedestrian trajectory prediction, with the introduction of a novel 2D convolutional model. This new model outperforms recurrent models, and it achieves state-of-the-art results on the ETH and TrajNet datasets. We also present an effective system to represent pedestrian positions and powerful data augmentation techniques, such as the addition of Gaussian noise and the use of random rotations, which can be applied to any model. As an additional exploratory analysis, we present experimental results on the inclusion of occupancy methods to model social information, which empirically show that these methods are ineffective in capturing social interaction. Numéro de notice : A2022-109 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.patcog.2021.108252 Date de publication en ligne : 13/08/2021 En ligne : https://doi.org/10.1016/j.patcog.2021.108252 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99615
in Pattern recognition > vol 121 (January 2022) . - n° 108252[article]Mapping trajectories and flows: facilitating a human-centered approach to movement data analytics / Somayeh Dodge in Cartography and Geographic Information Science, vol 48 n° 4 (July 2021)
![]()
[article]
Titre : Mapping trajectories and flows: facilitating a human-centered approach to movement data analytics Type de document : Article/Communication Auteurs : Somayeh Dodge, Auteur ; Evgeny Noi, Auteur Année de publication : 2021 Article en page(s) : pp 353 - 375 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse visuelle
[Termes IGN] données de flux
[Termes IGN] interaction humain-espace
[Termes IGN] origine - destination
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] trajet (mobilité)
[Termes IGN] visualisation cartographique
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) This paper argues for a “human-centered” approach to knowledge discovery from movement data through the use of visualization and mapping. As movement data becomes more available and diverse in dimension and resolution, mapping becomes particularly important in the exploratory analysis of movement trajectories and for capturing patterns and structures in large origin-destination flow data sets. Movement phenomena (e.g. ranging from micro-movements of humans and animals to macro-level mobility, to migration flows, to spread of viruses) are complex dynamic processes which are realized in a multidimensional location-time-context space. This paper provides a comprehensive overview of various visualization techniques for mapping movement through the lens of cartography and with a special focus on the “human user” (e.g. data scientist, analyst, domain expert, etc.). We systematically characterize and categorize available techniques based on their visual specifications and functional capacities for human control, map-interaction, and design flexibility. These elements are beneficial to enhance the user’s capacities for map reasoning and knowledge discovery. Trends and gaps in the literature on movement visualization over the past 10 years are discussed. Our review suggests that future research should focus more on the role of the “human” in the development of human-centered visual analytic and exploratory tools, while providing functionalities for mapping uncertainty and protecting individual privacy in knowledge discovery of movement. These tools should be guided by a cartographic framework and visual principles specifically pertinent to movement. Numéro de notice : A2021-446 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1913763 Date de publication en ligne : 21/05/2021 En ligne : https://doi.org/10.1080/15230406.2021.1913763 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97853
in Cartography and Geographic Information Science > vol 48 n° 4 (July 2021) . - pp 353 - 375[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2021041 SL Revue Centre de documentation Revues en salle Disponible Using information entropy and a multi-layer neural network with trajectory data to identify transportation modes / Qingying Yu in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
![]()
[article]
Titre : Using information entropy and a multi-layer neural network with trajectory data to identify transportation modes Type de document : Article/Communication Auteurs : Qingying Yu, Auteur ; Yonglong Luo, Auteur ; Dongxia Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1346 - 1373 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] direction
[Termes IGN] données spatiotemporelles
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] mobilité urbaine
[Termes IGN] Pékin (Chine)
[Termes IGN] plan de déplacement urbain
[Termes IGN] reconstruction d'itinéraire ou de trajectoire
[Termes IGN] segmentation
[Termes IGN] trajet (mobilité)
[Termes IGN] vitesse de déplacementRésumé : (auteur) Residents’ trajectory data denote their instantaneous locations along their movements. Mobility research that applies trajectory mining techniques to identify the transportation modes of these movements can inform urban transportation planning. Herein, we propose a five-step approach with information entropy and a multi-layer neural network to identify transportation modes from trajectory data. First, this approach extracts the motion features at each time-stamped location based on foundation geospatial data and spatiotemporal trajectory data, including the speed, acceleration, change of direction, rate of change in direction, and distance from each basic transportation facility. The second step uses information entropy to identify the features that play key roles in identifying transportation modes. The third step weighs each attribute in the feature vector consisting of the selected features and normalizes it to prepare it as input data. The fourth step constructs, trains, and tests a multi-layer neural network with seven-fold cross-validation. The final step includes a post-processing method to optimize the identification result. We use F-measure metric to evaluate the performance. Experimental results on a real trajectory dataset show that the proposed approach can identify the transportation mode at each time-stamped location and outperforms existing transportation-mode identification methods in terms of accuracy and stability. Numéro de notice : A2021-448 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1901904 Date de publication en ligne : 15/04/2021 En ligne : https://doi.org/10.1080/13658816.2021.1901904 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97860
in International journal of geographical information science IJGIS > vol 35 n° 7 (July 2021) . - pp 1346 - 1373[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021071 SL Revue Centre de documentation Revues en salle Disponible Stability of urban forms: modelling the emergence of collective behaviour in residential trajectories / Arthur Benichou (2021)
PermalinkContext-aware similarity of GPS trajectories / Radu Mariescu-Istodor in Journal of location-based services, vol 14 n° 4 ([01/11/2020])
PermalinkUnfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation / Boxi Shen in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkFrom small sets of GPS trajectories to detailed movement profiles: quantifying personalized trip-dependent movement diversity / Elham Naghizade in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
PermalinkPrediction of RTK positioning integrity for journey planning / Ahmed El-Mowafy in Journal of applied geodesy, vol 14 n° 4 (October 2020)
PermalinkMap construction algorithms: a local evaluation through hiking data / David Duran in Geoinformatica [en ligne], vol 24 n° 3 (July 2020)
PermalinkDeveloping shopping and dining walking indices using POIs and remote sensing data / Yingbin Deng in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkExtracting commuter-specific destination hotspots from trip destination data – comparing the boro taxi service with Citi Bike in NYC / Andreas Keler in Geo-spatial Information Science, vol 23 n° 2 (June 2020)
PermalinkAnalyse spatio-temporelle des mobilités de randonneurs dans le PNR du Massif des Bauges / Colin Kerouanton (2020)
PermalinkDiagnostic qualité et apurement des données de mobilité quotidienne issues de l’enquête mixte et longitudinale Mobi’Kids / Sylvestre Duroudier in Revue internationale de géomatique, vol 30 n° 1-2 (janvier - juin 2020)
Permalink