Descripteur
Documents disponibles dans cette catégorie (3)



Etendre la recherche sur niveau(x) vers le bas
Spherical harmonic synthesis of area-mean potential values on irregular surfaces / Blažej Bucha in Journal of geodesy, vol 96 n° 10 (October 2022)
![]()
[article]
Titre : Spherical harmonic synthesis of area-mean potential values on irregular surfaces Type de document : Article/Communication Auteurs : Blažej Bucha, Auteur Année de publication : 2022 Article en page(s) : n° 68 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de gravitation
[Termes IGN] convergence
[Termes IGN] harmonique sphérique
[Termes IGN] surface hétérogène
[Termes IGN] transformation de Legendre
[Termes IGN] transformation rapide de FourierRésumé : (auteur) We present a method to integrate external solid spherical harmonic expansions at geographical grids residing on undulated surfaces. It can be used to evaluate area-mean potential values on planetary surfaces that vary within grid cells. This is in contrast with available methods, which assume cells with a constant spherical radius only. When formulating the technique, we took advantage of 2D spherical Fourier methods to improve the computational speed. The price to be paid are high memory requirements, even with moderate maximum harmonic degrees such as 100 (both of the potential and of the irregular surface). In numerical experiments, we validate the method against independent area-mean potential values to prove its correctness. A study of the series behavior below the sphere of convergence shows that the series may diverge on planetary topographies, similarly as it is with its point-value counterpart. The method can be utilized in numerical studies of the change of boundary method, one of the pivotal concepts of recent high-degree models such as EGM2008. A numerical implementation is made available through CHarm, a C library to work with spherical harmonics up to high degrees. CHarm is accessible via https://github.com/blazej-bucha/charm. Numéro de notice : A2022-736 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01658-1 Date de publication en ligne : 27/09/2022 En ligne : https://doi.org/10.1007/s00190-022-01658-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101708
in Journal of geodesy > vol 96 n° 10 (October 2022) . - n° 68[article]On computing ellipsoidal harmonics using Jekeli’s renormalization / J. Sebera in Journal of geodesy, vol 86 n° 9 (September 2012)
![]()
[article]
Titre : On computing ellipsoidal harmonics using Jekeli’s renormalization Type de document : Article/Communication Auteurs : J. Sebera, Auteur ; Johannes Bouman, Auteur ; W. Bosch, Auteur Année de publication : 2012 Article en page(s) : pp 713 - 726 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] Earth Gravity Model 2008
[Termes IGN] fonction hypergéométrique
[Termes IGN] harmonique ellipsoïdale
[Termes IGN] potentiel de pesanteur terrestre
[Termes IGN] transformation de LegendreRésumé : (Auteur) Gravity data observed on or reduced to the ellipsoid are preferably represented using ellipsoidal harmonics instead of spherical harmonics. Ellipsoidal harmonics, however, are difficult to use in practice because the computation of the associated Legendre functions of the second kind that occur in the ellipsoidal harmonic expansions is not straightforward. Jekeli’s renormalization simplifies the computation of the associated Legendre functions. We extended the direct computation of these functions—as well as that of their ratio—up to the second derivatives and minimized the number of required recurrences by a suitable hypergeometric transformation. Compared with the original Jekeli’s renormalization the associated Legendre differential equation is fulfilled up to much higher degrees and orders for our optimized recurrences. The derived functions were tested by comparing functionals of the gravitational potential computed with both ellipsoidal and spherical harmonic syntheses. As an input, the high resolution global gravity field model EGM2008 was used. The relative agreement we found between the results of ellipsoidal and spherical syntheses is 10-14, 10-12 and 10-8 for the potential and its first and second derivatives, respectively. Using the original renormalization, this agreement is 10-12, 10-8 and 10-5, respectively. In addition, our optimized recurrences require less computation time as the number of required terms for the hypergeometric functions is less. Numéro de notice : A2012-468 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-012-0549-4 Date de publication en ligne : 07/03/2012 En ligne : https://doi.org/10.1007/s00190-012-0549-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31914
in Journal of geodesy > vol 86 n° 9 (September 2012) . - pp 713 - 726[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 266-2012091 RAB Revue Centre de documentation En réserve L003 Disponible
Titre : Cycle d'enseignement approfondi de géodésie : cours de géodésie spatiale, annexes : éléments de mécanique analytique Type de document : Guide/Manuel Auteurs : Claude Boucher , Auteur
Editeur : Paris : Institut Géographique National - IGN (1940-2007) Année de publication : 1977 Collection : Publications techniques en géodésie Sous-collection : Cours et conférences num. 26743 Importance : 27 p. Format : 21 x 30 cm Langues : Français (fre) Descripteur : [Vedettes matières IGN] Analyse numérique
[Termes IGN] accélération
[Termes IGN] équation de Lagrange
[Termes IGN] mécanique
[Termes IGN] mécanique de Hamilton
[Termes IGN] transformation de LegendreNuméro de notice : 51636 Affiliation des auteurs : IGN (1940-2011) Thématique : MATHEMATIQUE Nature : Manuel de cours IGN Accessibilité hors numérique : Non accessible via le SUDOC Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=48137 Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 51636-03 7D Livre SGM K001 Exclu du prêt