Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physiologique > vision > vision monoculaire
vision monoculaire |
Documents disponibles dans cette catégorie (11)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Building footprint extraction in Yangon city from monocular optical satellite image using deep learning / Hein Thura Aung in Geocarto international, vol 37 n° 3 ([01/02/2022])
[article]
Titre : Building footprint extraction in Yangon city from monocular optical satellite image using deep learning Type de document : Article/Communication Auteurs : Hein Thura Aung, Auteur ; Sao Hone Pha, Auteur ; Wataru Takeuchi, Auteur Année de publication : 2022 Article en page(s) : pp 792 - 812 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Birmanie
[Termes IGN] détection du bâti
[Termes IGN] empreinte
[Termes IGN] image Geoeye
[Termes IGN] image isolée
[Termes IGN] réseau antagoniste génératif
[Termes IGN] vision monoculaireRésumé : (auteur) In this research, building footprints in Yangon City, Myanmar are extracted only from monocular optical satellite image by using conditional generative adversarial network (CGAN). Both training dataset and validating dataset are created from GeoEYE image of Dagon Township in Yangon City. Eight training models are created according to the change of values in three training parameters; learning rate, β1 term of Adam, and number of filters in the first convolution layer of the generator and the discriminator. The images of the validating dataset are divided into four image groups; trees, buildings, mixed trees and buildings, and pagodas. The output images of eight trained models are transformed to the vector images and then evaluated by comparing with manually digitized polygons using completeness, correctness and F1 measure. According to the results, by using CGAN, building footprints can be extracted up to 71% of completeness, 81% of correctness and 69% of F1 score from only monocular optical satellite image. Numéro de notice : A2022-345 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1740949 Date de publication en ligne : 20/03/2020 En ligne : https://doi.org/10.1080/10106049.2020.1740949 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100526
in Geocarto international > vol 37 n° 3 [01/02/2022] . - pp 792 - 812[article]Adaptation d'un algorithme SLAM pour la vision panoramique multi-expositions dans des scènes à haute gamme dynamique / Eva Goichon (2022)
Titre : Adaptation d'un algorithme SLAM pour la vision panoramique multi-expositions dans des scènes à haute gamme dynamique Type de document : Mémoire Auteurs : Eva Goichon, Auteur Editeur : Strasbourg : Institut National des Sciences Appliquées INSA Strasbourg Année de publication : 2022 Importance : 52 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire de soutenance de Diplôme d’Ingénieur INSALangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] image panoramique
[Termes IGN] vision monoculaire
[Termes IGN] vision par ordinateur
[Termes IGN] vision stéréoscopiqueIndex. décimale : INSAS Mémoires d'ingénieur de l'INSA Strasbourg - Topographie, ex ENSAIS Résumé : (auteur) La Localisation et Cartographie Simultanées basée vision (SLAM) en robotique est bien établie mais trouve encore ses limites en environnement à grande gamme dynamique où les images acquises souffrent de sur- et sous-expositions. Ce travail s’appuie sur l’utilisation de caméras originales capables d’acquérir plusieurs expositions différentes simultanément en une image panoramique multiple pour limiter les saturations. Il en adapte les images et le modèle de projection en vue d’exploiter ces caméras dans le SLAM multi-caméra MCPTAM, initialement conçu pour des données différentes. Ce travail a permis de mettre en lumière les difficultés de MCPTAM dans les virages mais donne de meilleurs résultats avec des expositions multiples. Note de contenu : 1- Introduction
2- State-of-the-art
3- Description of methods used
4- Results
ConclusionNuméro de notice : 24092 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire ingénieur INSAS Organisme de stage : JRL (AIST-CNRS) / IRISA Rennes En ligne : http://eprints2.insa-strasbourg.fr/4672/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102562
Titre : Monocular depth estimation in forest environments Type de document : Article/Communication Auteurs : Hristina Hristova, Auteur ; Meinrad Abegg, Auteur ; Christoph Fischer, Auteur ; Nataliia Rehush, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2 Conférence : ISPRS 2022, Commission 2, 24th ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 1017 - 1023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage dirigé
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] image isolée
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] jeu de données localisées
[Termes IGN] profondeur
[Termes IGN] vision monoculaireRésumé : (auteur) Depth estimation from a single image is a challenging task, especially inside the highly structured forest environment. In this paper, we propose a supervised deep learning model for monocular depth estimation based on forest imagery. We train our model on a new data set of forest RGB-D images that we collected using a terrestrial laser scanner. Alongside the input RGB image, our model uses a sparse depth channel as input to recover the dense depth information. The prediction accuracy of our model is significantly higher than that of state-of-the-art methods when applied in the context of forest depth estimation. Our model brings the RMSE down to 2.1 m, compared to 4 m and above for reference methods. Numéro de notice : C2022-022 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2022-1017-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2022-1017-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100848 Deep convolutional neural networks for scene understanding and motion planning for self-driving vehicles / Abdelhak Loukkal (2021)
Titre : Deep convolutional neural networks for scene understanding and motion planning for self-driving vehicles Type de document : Thèse/HDR Auteurs : Abdelhak Loukkal, Auteur ; Yves Grandvalet, Directeur de thèse Editeur : Compiègne : Université de Technologie de Compiègne UTC Année de publication : 2021 Importance : 129 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse présentée pour l’obtention du grade de Docteur de l’UTC, spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] compréhension de l'image
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion de données multisource
[Termes IGN] navigation autonome
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation sémantique
[Termes IGN] système de navigation
[Termes IGN] véhicule automobile
[Termes IGN] vision monoculaire
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) During this thesis, some perception approaches for self-driving vehicles were developed using de convolutional neural networks applied to monocular camera images and High-Definition map (HD-ma rasterized images. We focused on camera-only solutions instead of leveraging sensor fusion with rang sensors because cameras are the most cost-effective and discrete sensors. The objective was also to show th camera-based approaches can perform at par with LiDAR-based solutions on certain 3D vision tasks. Rea world data was used for training and evaluation of the developed approaches but simulation was als leveraged when annotated data was lacking or for safety reasons when evaluating driving capabilities. Cameras provide visual information in a projective space where the perspective effect does not preserve th distances homogeneity. Scene understanding tasks such as semantic segmentation are then often operated i the camera-view space and then projected to 3D using a precise depth sensor such as a LiDAR. Having thi scene understanding in the 3D space is useful because the vehicles evolve in the 3D world and the navigatio algorithms reason in this space. Our focus was then to leverage the geometric knowledge about the camer parameters and its position in the 3D world to develop an approach that allows scene understanding in the 3D space using only a monocular image as input. Neural networks have also proven to be useful for more than just perception and are more and more used fo the navigation and planning tasks that build on the perception outputs. Being able to output 3D scen understanding information from a monocular camera has also allowed us to explore the possibility of havin an end-to-end holistic neural network that takes a camera image as input, extracts intermediate semantic information in the 3D space and then lans the vehicle's trajectory. Note de contenu : 1. Introduction
1.1 General context
1.2 Framework and objectives
1.3 Organization and contributions of the thesis
2. Background and related work
2.1 Introduction
2.2 Autonomous driving perception datasets
2.3 Autonomous driving simulators
2.4 Semantic segmentation with CNNs
2.5 Monocular depth estimation with CNNs
2.6 Driving with imitation learning
2.7 Conclusion
3. Semantic segmentation using cartographic and depth maps
3.1 Introduction
3.2 Synthetic dataset
3.3 Proposed methods
3.4 Experiments
3.5 Conclusion
4. Disparity weighted loss for semantic segmentation
4.1 Introduction
4.2 Disparity weighting for semantic segmentation
4.3 Experiments
4.4 Conclusion
5. FlatMobileNet: Bird-Eye-View semantic masks from a monoc?ular camera
5.1 Introduction
5.2 Theoretical framework
5.3 FlatMobile network: footprint segmentation
5.4 Conclusion
6. Driving among flatmobiles
6.1 Introduction
6.2 Encoder-decoder LSTM for trajectory planning
6.3 Experimental evaluation
6.4 Conclusion
7. Conclusion
7.1 Contributions
7.2 PerspectivesNuméro de notice : 26769 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Compiègne : 2021 Organisme de stage : Heuristique et Diagnostic des Systèmes Complexes HeuDiaSyC nature-HAL : Thèse DOI : sans Date de publication en ligne : 25/10/2021 En ligne : https://tel.hal.science/tel-03402541/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99871 3D hand mesh reconstruction from a monocular RGB image / Hao Peng in The Visual Computer, vol 36 n° 10 - 12 (October 2020)
[article]
Titre : 3D hand mesh reconstruction from a monocular RGB image Type de document : Article/Communication Auteurs : Hao Peng, Auteur ; Chuhua Xian, Auteur ; Yunbo Zhang, Auteur Année de publication : 2020 Article en page(s) : pp pages2227 - 2239 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] estimation de pose
[Termes IGN] image de synthèse
[Termes IGN] image RVB
[Termes IGN] maillage
[Termes IGN] modélisation 3D
[Termes IGN] réalité augmentée
[Termes IGN] réalité virtuelle
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] vision monoculaireRésumé : (auteur) Most of the existing methods for 3D hand analysis based on RGB images mainly focus on estimating hand keypoints or poses, which cannot capture geometric details of the 3D hand shape. In this work, we propose a novel method to reconstruct a 3D hand mesh from a single monocular RGB image. Different from current parameter-based or pose-based methods, our proposed method directly estimates the 3D hand mesh based on graph convolution neural network (GCN). Our network consists of two modules: the hand localization and mask generation module, and the 3D hand mesh reconstruction module. The first module, which is a VGG16-based network, is applied to localize the hand region in the input image and generate the binary mask of the hand. The second module takes the high-order features from the first and uses a GCN-based network to estimate the coordinates of each vertex of the hand mesh and reconstruct the 3D hand shape. To achieve better accuracy, a novel loss based on the differential properties of the discrete mesh is proposed. We also use professional software to create a large synthetic dataset that contains both ground truth 3D hand meshes and poses for training. To handle the real-world data, we use the CycleGAN network to transform the data domain of real-world images to that of our synthesis dataset. We demonstrate that our method can produce accurate 3D hand mesh and achieve an efficient performance for real-time applications. Numéro de notice : A2020-596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01908-3 Date de publication en ligne : 14/07/2020 En ligne : https://doi.org/10.1007/s00371-020-01908-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95936
in The Visual Computer > vol 36 n° 10 - 12 (October 2020) . - pp pages2227 - 2239[article]Estimation de profondeur à partir d'images monoculaires par apprentissage profond / Michel Moukari (2019)PermalinkVision-based localization with discriminative features from heterogeneous visual data / Nathan Piasco (2019)PermalinkL'image en 3 dimensions / L. Peretz (1990)PermalinkMise en correspondance et reconstruction stéréo utilisant une description structurelle des images / Thomas Skordas (1988)PermalinkQuelques aspects vision monoculaire, vision du relief et vision des couleurs en relation avec les problèmes rencontrés par les photogrammètres, les photo-interprètes et les cartographes / Jean Cruset in Bulletin [Société Française de Photogrammétrie et Télédétection], n° 76 (Juillet 1979)PermalinkTraité de télémétrie / P. Mazuir (1931)Permalink