Descripteur
Termes IGN > informatique > intelligence artificielle > vision par ordinateur
vision par ordinateurVoir aussi |
Documents disponibles dans cette catégorie (151)



Etendre la recherche sur niveau(x) vers le bas
A method of vision aided GNSS positioning using semantic information in complex urban environment / Rui Zhai in Remote sensing, vol 14 n° 4 (February-2 2022)
![]()
[article]
Titre : A method of vision aided GNSS positioning using semantic information in complex urban environment Type de document : Article/Communication Auteurs : Rui Zhai, Auteur ; Yunbin Yuan, Auteur Année de publication : 2022 Article en page(s) : n° 869 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] apprentissage profond
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] centrale inertielle
[Termes IGN] filtre de Kalman
[Termes IGN] GNSS assisté pour la navigation
[Termes IGN] information sémantique
[Termes IGN] milieu urbain
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GNSS
[Termes IGN] segmentation sémantique
[Termes IGN] système de numérisation mobile
[Termes IGN] vision par ordinateurRésumé : (auteur) High-precision localization through multi-sensor fusion has become a popular research direction in unmanned driving. However, most previous studies have performed optimally only in open-sky conditions; therefore, high-precision localization in complex urban environments required an urgent solution. The complex urban environments employed in this study include dynamic environments, which result in limited visual localization performance, and highly occluded environments, which yield limited global navigation satellite system (GNSS) performance. In order to provide high-precision localization in these environments, we propose a vision-aided GNSS positioning method using semantic information by integrating stereo cameras and GNSS into a loosely coupled navigation system. To suppress the effect of dynamic objects on visual positioning accuracy, we propose a dynamic-simultaneous localization and mapping (Dynamic-SLAM) algorithm to extract semantic information from images using a deep learning framework. For the GPS-challenged environment, we propose a semantic-based dynamic adaptive Kalman filtering fusion (S-AKF) algorithm to develop vision aided GNSS and achieve stable and high-precision positioning. Experiments were carried out in GNSS-challenged environments using the open-source KITTI dataset to evaluate the performance of the proposed algorithm. The results indicate that the dynamic-SLAM algorithm improved the performance of the visual localization algorithm and effectively suppressed the error spread of the visual localization algorithm. Additionally, after vision was integrated, the loosely-coupled navigation system achieved continuous high-accuracy positioning in GNSS-challenged environments. Numéro de notice : A2022-167 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : 10.3390/rs14040869 Date de publication en ligne : 11/02/2022 En ligne : https://doi.org/10.3390/rs14040869 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99792
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 869[article]
Titre : Event-driven feature detection and tracking for visual SLAM Type de document : Thèse/HDR Auteurs : Ignacio Alzugaray, Auteur Editeur : Zurich : Eidgenossische Technische Hochschule ETH - Ecole Polytechnique Fédérale de Zurich EPFZ Année de publication : 2022 Note générale : bibliographie
thesis submitted to attain the degree of Doctor of Sciences of ETH ZurichLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] caméra d'événement
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image floue
[Termes IGN] reconnaissance de formes
[Termes IGN] séquence d'images
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Traditional frame-based cameras have become the de facto sensor of choice for a multitude of applications employing Computer Vision due to their compactness, low cost, ubiquity, and ability to provide information-rich exteroceptive measurements. Despite their dominance in the field, these sensors exhibit limitations in common, real-world scenarios where detrimental effects, such as motion blur during high-speed motion or over-/underexposure in scenes with poor illumination, are prevalent. Challenging the dominance of traditional cameras, the recent emergence of bioinspired event cameras has opened up exciting research possibilities for robust perception due to their high-speed sensing, High-Dynamic-Range capabilities, and low power consumption. Despite their promising characteristics, event cameras present numerous challenges due to their unique output: a sparse and asynchronous stream of events, only capturing incremental perceptual changes at individual pixels. This radically different sensing modality renders most of the traditional Computer Vision algorithms incompatible without substantial prior adaptation, as they are initially devised for processing sequences of images captured at fixed frame-rate. Consequently, the bulk of existing event-based algorithms in the literature have opted to discretize the event stream into batches and process them sequentially, effectively reverting to frame-like representations in an attempt to mimic the processing of image sequences from traditional sensors. Such event-batching algorithms have demonstrably outperformed other alternative frame-based algorithms in scenarios where the quality of conventional intensity images is severely compromised, unveiling the inherent potential of these new sensors and popularizing them. To date, however, many newly designed event-based algorithms still rely on a contrived discretization of the event stream for its processing, suggesting that the full potential of event cameras is yet to be harnessed by processing their output more naturally. This dissertation departs from the mere adaptation of traditional frame-based approaches and advocates instead for the development of new algorithms integrally designed for event cameras to fully exploit their advantageous characteristics. In particular, the focus of this thesis lies on describing a series of novel strategies and algorithms that operate in a purely event-driven fashion, \ie processing each event as soon as it gets generated without any intermediate buffering of events into arbitrary batches and thus avoiding any additional latency in their processing. Such event-driven processes present additional challenges compared to their simpler event-batching counterparts, which, in turn, can largely be attributed to the requirement to produce reliable results at event-rate, entailing significant practical implications for their deployment in real-world applications. The body of this thesis addresses the design of event-driven algorithms for efficient and asynchronous feature detection and tracking with event cameras, covering alongside crucial elements on pattern recognition and data association for this emerging sensing modality. In particular, a significant portion of this thesis is devoted to the study of visual corners for event cameras, leading to the design of innovative event-driven approaches for their detection and tracking as corner-events. Moreover, the presented research also investigates the use of generic patch-based features and their event-driven tracking for the efficient retrieval of high-quality feature tracks. All the developed algorithms in this thesis serve as crucial stepping stones towards a completely event-driven, feature-based Simultaneous Localization And Mapping (SLAM) pipeline. This dissertation extends upon established concepts from state-of-the-art, event-driven methods and further explores the limits of the event-driven paradigm in realistic monocular setups. While the presented approaches solely rely on event-data, the gained insights are seminal to future investigations targeting the combination of event-based vision with other, complementary sensing modalities. The research conducted here paves the way towards a new family of event-driven algorithms that operate efficiently, robustly, and in a scalable manner, envisioning a potential paradigm shift in event-based Computer Vision. Note de contenu : 1- Introduction
2- Contribution
3- Conclusion and outlookNuméro de notice : 28699 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD Thesis : Sciences : ETH Zurich : 2022 DOI : sans En ligne : https://www.research-collection.ethz.ch/handle/20.500.11850/541700 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100470 Pose estimation and 3D reconstruction of vehicles from stereo-images using a subcategory-aware shape prior / Maximilian Alexander Coenen in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
![]()
[article]
Titre : Pose estimation and 3D reconstruction of vehicles from stereo-images using a subcategory-aware shape prior Type de document : Article/Communication Auteurs : Maximilian Alexander Coenen, Auteur ; Franz Rottensteiner, Auteur Année de publication : 2021 Article en page(s) : pp 27 - 47 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] estimation de pose
[Termes IGN] modèle stochastique
[Termes IGN] problème inverse
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] robotique
[Termes IGN] véhicule automobile
[Termes IGN] vision par ordinateurRésumé : (auteur) The 3D reconstruction of objects is a prerequisite for many highly relevant applications of computer vision such as mobile robotics or autonomous driving. To deal with the inverse problem of reconstructing 3D objects from their 2D projections, a common strategy is to incorporate prior object knowledge into the reconstruction approach by establishing a 3D model and aligning it to the 2D image plane. However, current approaches are limited due to inadequate shape priors and the insufficiency of the derived image observations for a reliable alignment with the 3D model. The goal of this paper is to show how 3D object reconstruction can profit from a more sophisticated shape prior and from a combined incorporation of different observation types inferred from the images. We introduce a subcategory-aware deformable vehicle model that makes use of a prediction of the vehicle type for a more appropriate regularisation of the vehicle shape. A multi-branch CNN is presented to derive predictions of the vehicle type and orientation. This information is also introduced as prior information for model fitting. Furthermore, the CNN extracts vehicle keypoints and wireframes, which are well-suited for model-to-image association and model fitting. The task of pose estimation and reconstruction is addressed by a versatile probabilistic model. Extensive experiments are conducted using two challenging real-world data sets on both of which the benefit of the developed shape prior can be shown. A comparison to state-of-the-art methods for vehicle pose estimation shows that the proposed approach performs on par or better, confirming the suitability of the developed shape prior and probabilistic model for vehicle reconstruction. Numéro de notice : A2021-772 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.07.006 Date de publication en ligne : 14/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.07.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98829
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 27 - 47[article]The integration of GPS/BDS real-time kinematic positioning and visual–inertial odometry based on smartphones / Zun Niu in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
![]()
[article]
Titre : The integration of GPS/BDS real-time kinematic positioning and visual–inertial odometry based on smartphones Type de document : Article/Communication Auteurs : Zun Niu, Auteur ; Fugui Guo, Auteur ; Qiangqiang Shuai, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 699 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] C++
[Termes IGN] centrale inertielle
[Termes IGN] filtre de Kalman
[Termes IGN] format RINEX
[Termes IGN] odomètre
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par BeiDou
[Termes IGN] positionnement par GNSS
[Termes IGN] précision du positionnement
[Termes IGN] programmation informatique
[Termes IGN] robot
[Termes IGN] téléphone intelligent
[Termes IGN] vision par ordinateurRésumé : (auteur) The real-time kinematic positioning technique (RTK) and visual–inertial odometry (VIO) are both promising positioning technologies. However, RTK degrades in GNSS-hostile areas, where global navigation satellite system (GNSS) signals are reflected and blocked, while VIO is affected by long-term drift. The integration of RTK and VIO can improve the accuracy and robustness of positioning. In recent years, smartphones equipped with multiple sensors have become commodities and can provide measurements for integrating RTK and VIO. This paper verifies the feasibility of integrating RTK and VIO using smartphones, and we propose an improved algorithm to integrate RTK and VIO with better performance. We began by developing an Android smartphone application for data collection and then wrote a Python program to convert the data to a robot operating system (ROS) bag. Next, we established two ROS nodes to calculate the RTK results and accomplish the integration. Finally, we conducted experiments in urban areas to assess the integration of RTK and VIO based on smartphones. The results demonstrate that the integration improves the accuracy and robustness of positioning and that our improved algorithm reduces altitude deviation. Our work can aid navigation and positioning research, which is the reason why we open source the majority of the codes at our GitHub. Numéro de notice : A2021-800 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10100699 Date de publication en ligne : 14/10/2021 En ligne : https://doi.org/10.3390/ijgi10100699 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98852
in ISPRS International journal of geo-information > vol 10 n° 10 (October 2021) . - n° 699[article]Unsupervised self-adaptive deep learning classification network based on the optic nerve microsaccade mechanism for unmanned aerial vehicle remote sensing image classification / Ming Cong in Geocarto international, vol 36 n° 18 ([01/10/2021])
![]()
[article]
Titre : Unsupervised self-adaptive deep learning classification network based on the optic nerve microsaccade mechanism for unmanned aerial vehicle remote sensing image classification Type de document : Article/Communication Auteurs : Ming Cong, Auteur ; Zhiye Wang, Auteur ; Yiting Tao, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2065 - 2084 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] chromatopsie
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] compréhension de l'image
[Termes IGN] échantillonnage d'image
[Termes IGN] filtrage numérique d'image
[Termes IGN] image captée par drone
[Termes IGN] vision
[Termes IGN] vision par ordinateurRésumé : (auteur) Unmanned aerial vehicle remote sensing images need to be precisely and efficiently classified. However, complex ground scenes produced by ultra-high ground resolution, data uniqueness caused by multi-perspective observations, and need for manual labelling make it difficult for current popular deep learning networks to obtain reliable references from heterogeneous samples. To address these problems, this paper proposes an optic nerve microsaccade (ONMS) classification network, developed based on multiple dilated convolution. ONMS first applies a Laplacian of Gaussian filter to find typical features of ground objects and establishes class labels using adaptive clustering. Then, using an image pyramid, multi-scale image data are mapped to the class labels adaptively to generate homologous reliable samples. Finally, an end-to-end multi-scale neural network is applied for classification. Experimental results show that ONMS significantly reduces sample labelling costs while retaining high cognitive performance, classification accuracy, and noise resistance—indicating that it has significant application advantages. Numéro de notice : A2021-707 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2019.1687593 Date de publication en ligne : 07/11/2019 En ligne : https://doi.org/10.1080/10106049.2019.1687593 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98602
in Geocarto international > vol 36 n° 18 [01/10/2021] . - pp 2065 - 2084[article]3D map creation using crowdsourced GNSS data / Terence Lines in Computers, Environment and Urban Systems, vol 89 (September 2021)
PermalinkGIScience integrated with computer vision for the examination of old engravings and drawings / Motti Zohar in International journal of geographical information science IJGIS, vol 35 n° 9 (September 2021)
PermalinkDigital camera calibration for cultural heritage documentation: the case study of a mass digitization project of religious monuments in Cyprus / Evagoras Evagorou in European journal of remote sensing, vol 54 sup 1 (2021)
PermalinkA shape transformation-based dataset augmentation framework for pedestrian detection / Zhe Chen in International journal of computer vision, vol 129 n° 4 (April 2021)
PermalinkA skyline-based approach for mobile augmented reality / Mehdi Ayadi in The Visual Computer, vol 37 n° 4 (April 2021)
PermalinkVisual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors / Longyu Zhang in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)
PermalinkLightweight convolutional neural network-based pedestrian detection and re-identification in multiple scenarios / Xiao Ke in Machine Vision and Applications, vol 32 n° 2 (March 2021)
PermalinkUnsupervised deep representation learning for real-time tracking / Ning Wang in International journal of computer vision, vol 129 n° 2 (February 2021)
PermalinkPermalinkPermalink