Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > rayonnement électromagnétique > propagation troposphérique > retard troposphérique > retard troposphérique zénithal
retard troposphérique zénithal |
Documents disponibles dans cette catégorie (67)



Etendre la recherche sur niveau(x) vers le bas
Outliers and uncertainties in GNSS ZTD estimates from double-difference processing and precise point positioning / Katarzyna Stępniak in GPS solutions, vol 26 n° 3 (July 2022)
![]()
[article]
Titre : Outliers and uncertainties in GNSS ZTD estimates from double-difference processing and precise point positioning Type de document : Article/Communication Auteurs : Katarzyna Stępniak, Auteur ; Olivier Bock , Auteur ; Pierre Bosser
, Auteur ; Pawel Wielgosz, Auteur
Année de publication : 2022 Projets : VEGAN / Bock, Olivier Article en page(s) : n° 74 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données GNSS
[Termes IGN] double différence
[Termes IGN] ERA5
[Termes IGN] incertitude des données
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard troposphérique zénithal
[Termes IGN] valeur aberrante
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) Double-difference (DD) analysis and precise point positioning (PPP) are two widely used processing approaches to analyze ground-based GNSS measurements. We investigate the quality of the zenith tropospheric delay (ZTD) estimates produced from both processing approaches for a regional network over 1 year and show that DD solutions contain more numerous and larger ZTD outliers. The accuracy of both DD and PPP solutions strongly depends on the data processing procedure and models. We analyze the impact of mapping functions, satellite orbit and clock products and ambiguity resolution (fixed vs. float) on ZTD estimates. The results are assessed from station position repeatability and ZTD differences with respect to the ERA5 reanalysis. As expected, mapping functions have the strongest impact, with VMF1 being more accurate than GMF. Surprisingly, the impact of the ambiguity resolution and satellite products is rather weak in the PPP solution. We speculate that this results from the fact that final satellite products have reached a high level of accuracy and that other error sources now dominate static PPP solutions. A time and frequency analysis reveal unprecedented spurious sub-daily signals in the ZTD time series, which occur at the frequency of the GPS satellite repeat period and its harmonics. This suggests that sub-daily GPS ZTD estimates contain a significant part of the residual modeling errors due to satellite orbits, tidal models, mapping functions and multipath, which still need to be improved. Numéro de notice : A2022-359 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-022-01261-z Date de publication en ligne : 29/04/2022 En ligne : https://doi.org/10.1007/s10291-022-01261-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100578
in GPS solutions > vol 26 n° 3 (July 2022) . - n° 74[article]Assessing ZWD models in delay and height domains using data from stations in different climate regions / Thainara Munhoz Alexandre de Lima in Applied geomatics, vol 14 n° 1 (March 2022)
![]()
[article]
Titre : Assessing ZWD models in delay and height domains using data from stations in different climate regions Type de document : Article/Communication Auteurs : Thainara Munhoz Alexandre de Lima, Auteur ; Marcelo Santos, Auteur ; Daniele Barroca Marra Alves, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 93 - 103 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] climat
[Termes IGN] correction du signal
[Termes IGN] données GNSS
[Termes IGN] modèle atmosphérique
[Termes IGN] modèle empirique
[Termes IGN] modèle météorologique
[Termes IGN] positionnement ponctuel précis
[Termes IGN] prévision météorologique
[Termes IGN] radiosondage
[Termes IGN] retard troposphérique zénithalRésumé : (auteur) Global Navigation Satellite System (GNSS) has revolutionized activities involving geodetic positioning. To achieve a desired accuracy, it is essential to model the atmosphere in an appropriate way. With respect to the neutral atmosphere, the signal sent by the satellite suffers a delay when crossing this layer during its travel to the receiver on the surface, the so-called neutral atmospheric delay. Although empirical models exist, they may not be suitable to represent microclimatic variations in different regions of the globe due to peculiarities that exist in diverse areas. To minimize this limitation, correction models based on numerical weather prediction (NWP) emerge. They allow the assessment of the delay from local atmospheric parameters and the evaluation of atmospheric particularities of each region. In addition, another way to obtain neutral atmosphere delay is by making use of data from radiosondes, which measure atmospheric data at various altitude levels. The main objective of this article is to investigate the performance of different models using GNSS data collected in countries with different climatic conditions. Assessment is performed on the positioning domain using the precise point positioning (PPP) technique. The results show that the proximity between the NWP-based models and radiosondes was approximately 3 cm, and that between empirical models was 5 cm, with variations that depended on the model and the region. Regarding the impact on the height component, the difference between the accuracy of the empirical and NWP models was approximately 16 cm. Numéro de notice : A2022-219 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s12518-021-00414-y En ligne : https://doi.org/10.1007/s12518-021-00414-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100088
in Applied geomatics > vol 14 n° 1 (March 2022) . - pp 93 - 103[article]Comprehensive study on the tropospheric wet delay and horizontal gradients during a severe weather event / Victoria Graffigna in Remote sensing, vol 14 n° 4 (February-2 2022)
![]()
[article]
Titre : Comprehensive study on the tropospheric wet delay and horizontal gradients during a severe weather event Type de document : Article/Communication Auteurs : Victoria Graffigna, Auteur ; Manuel Hernández-Pajares, Auteur ; Francisco Azpilicueta, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 888 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] données météorologiques
[Termes IGN] gradient de troposphère
[Termes IGN] phénomène climatique extrême
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station GNSS
[Termes IGN] surveillance météorologique
[Termes IGN] tempête
[Termes IGN] Texas (Etats-Unis)
[Termes IGN] vapeur d'eauRésumé : (auteur) GNSS meteorology is today one of the most growing technologies to monitor severe weather events. In this paper, we present the usage of 160 GPS reference stations over the period of 14 days to monitor and track Hurricane Harvey, which struck Texas in August 2017. We estimate the Zenith Wet Delay (ZWD) and the tropospheric gradients with 30 s interval using TOMION v2 software and carry out the processing in Precise Point Positioning (PPP) mode. We study the relationship of these parameters with atmospheric variables extracted from Tropical Rainfall Measuring Mission (TRMM) satellite mission and climate reanalysis model ERA5. This research finds that the ZWD shows patterns related to the rainfall rate and to the location of the hurricane. We also find that the tropospheric gradients are correlated with water vapor gradients before and after the hurricane, and with the wind and the pressure gradients only after the hurricane. This study also shows a new finding regarding the spectral distribution of the gradients, with a clear diurnal period present, which is also found on the ZWD itself. This kind of study approaches the GNSS meteorology to the increasing requirements of meteorologist in terms of monitoring severe weather events. Numéro de notice : A2022-166 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs14040888 Date de publication en ligne : 12/02/2022 En ligne : https://doi.org/10.3390/rs14040888 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99791
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 888[article]Modeling of precipitable water vapor from GPS observations using machine learning and tomography methods / Mir Reza Ghaffari Razin in Advances in space research, vol 69 n° 7 (April 2022)
![]()
[article]
Titre : Modeling of precipitable water vapor from GPS observations using machine learning and tomography methods Type de document : Article/Communication Auteurs : Mir Reza Ghaffari Razin, Auteur ; Behzad Voosoghi, Auteur Année de publication : 2022 Article en page(s) : pp 2671 - 2681 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] algorithme génétique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Inférence floue
[Termes IGN] Iran
[Termes IGN] précipitation
[Termes IGN] radiosondage
[Termes IGN] réseau neuronal artificiel
[Termes IGN] retard hydrostatique
[Termes IGN] retard troposphérique zénithal
[Termes IGN] tomographie par GPS
[Termes IGN] vapeur d'eau
[Termes IGN] voxelRésumé : (auteur) This paper studies the application of two machine learning methods to model precipitable water vapor (PWV) using observations of 23 GPS stations from the local GPS network of north-west of Iran in 2011. In a first step, the zenith tropospheric delay (ZTD) and zenith hydrostatic delay (ZHD) is calculated with the Bernese GNSS software and Saastamoinen model as revised by Davis, respectively. Then, by subtracting the ZHD from the ZTD, the zenith wet delay (ZWD) is obtained at each GPS station, for all times. In a second step, ZWD is modeled by two different machine learning methods, based on the latitude, longitude, DOY, time, relative humidity, temperature and pressure. After training a Support Vector Machine (SVM) and an Artificial Neural Network (ANN), ZWD temporal and spatial variations are estimated. Using the formula by Bevis, the ZWD can be converted to PWV at any time and space, for each machine learning method. The accuracy of the two new models is evaluated using control stations, exterior and radiosonde station, whose observations were not used in the training step. Also, all the results of the SVM and ANN are compared with a voxel-based tomography (VBT) model. In the control and exterior stations, ZWD estimated by the SVM (ZWDSVM) and ANN (ZWDANN) is compared with the ZWD obtained from the GPS (ZWDGPS). Also, in the control and exterior stations, precise point positioning (PPP) is used to evaluate the accuracy of the new models. In the radiosonde station, the PWV of the new models (PWVSVM, PWVANN) is compared with the radiosonde PWV (PWVradiosonde) and voxel-based PWV (PWVVBT). The averaged relative error of the SVM, ANN and VBT models in the control stations is 10.50%, 12.71% and 12.91%, respectively. For SVM, ANN and VBT models, the averaged RMSE at the control stations is 1.87 (mm), 2.22 (mm) and 2.29 (mm), respectively. Analysis of the results of PWV estimated by the SVM, ANN and VBT, as well as the surface precipitation obtained from meteorological stations, indicate the high accuracy of the SVM in comparison with the ANN and VBT model. In the results shown in this paper, the SVM has the best ability to accurately estimate ZWD and PWV, using local GPS network observations. Numéro de notice : A2022-446 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.asr.2022.01.003 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1016/j.asr.2022.01.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100106
in Advances in space research > vol 69 n° 7 (April 2022) . - pp 2671 - 2681[article]Spatiotemporal analysis of precipitable water vapor using ANFIS and comparison against voxel-based tomography and radiosonde / Mir Reza Ghaffari Razin in GPS solutions, vol 26 n° 1 (January 2022)
![]()
[article]
Titre : Spatiotemporal analysis of precipitable water vapor using ANFIS and comparison against voxel-based tomography and radiosonde Type de document : Article/Communication Auteurs : Mir Reza Ghaffari Razin, Auteur ; Samed Inyurt, Auteur Année de publication : 2022 Article en page(s) : n° 1 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Inférence floue
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] positionnement ponctuel précis
[Termes IGN] précipitation
[Termes IGN] radiosondage
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station GPS
[Termes IGN] vapeur d'eau
[Termes IGN] voxelRésumé : (auteur) Water vapor (WV) is one of the most important parameters in meteorological studies. Using an adaptive neuro-fuzzy inference system (ANFIS), a new method has been proposed for spatiotemporal modeling of precipitable WV (PWV). In a first step, the tropospheric zenith wet delay (ZWD) is calculated using the observations of 23 GPS stations in the northwest of Iran. Out of these 23 stations, 21 stations for training and 2 stations for testing and validating were selected. The observations are for 15 days, ranging from day of year (DOY) 300 to 314 in 2011. The reason for choosing this area and time interval is the availability of a complete set of data. Then, the values of ZWD are converted to PWV. The PWV values obtained from this step are considered as the output of the ANFIS. Also, the latitude and longitude values of the GPS stations, the DOY, observational time (min), temperature (T), pressure (P), and relative humidity (RH) are considered input to ANFIS. The ANFIS network is trained using the back-propagation algorithm. After the training step, the PWV values are evaluated at 2 test stations, KLBR and GGSH, and at Tabriz radiosonde station (38.08° N, 46.28°E). For a more accurate evaluation, all the results of the new method are compared with the voxel-based tomography model. The evaluation of the results is performed using the relative error, standard deviation, correlation coefficient, and root-mean-square error (RMSE). Also, precise point positioning (PPP) is used to better evaluate the proposed model at test stations. The value of the correlation coefficient at the radiosonde station for the ANFIS and voxel is 0.90 and 0.87, respectively. Also, the minimum RMSE calculated for the ANFIS and voxel are 1.02 and 1.06 mm, respectively. In the PPP analysis, an improvement of about 4 mm is observed in the coordinates of the test stations using ANFIS. The results confirm the capability and high accuracy of the proposed model in determining the temporal and spatial variations of PWV. Numéro de notice : A2022-003 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-021-01184-1 Date de publication en ligne : 19/10/2021 En ligne : https://doi.org/10.1007/s10291-021-01184-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98828
in GPS solutions > vol 26 n° 1 (January 2022) . - n° 1[article]Comparative analysis of real-time precise point positioning method in terms of positioning and zenith tropospheric delay estimation / Omer Faruk Atiz in Survey review, vol inconnu ([24/11/2021])
PermalinkTropospheric and range biases in Satellite Laser Ranging / Mateusz Drożdżewski in Journal of geodesy, vol 95 n° 9 (September 2021)
PermalinkExploration and analysis of the factors influencing GNSS PWV for nowcasting applications / Min Guo in Advances in space research, vol 67 n° 12 (15 June 2021)
PermalinkImpact of different sampling rates on precise point positioning performance using online processing service / Serdar Erol in Geo-spatial Information Science, vol 24 n° 2 (June 2021)
PermalinkIntegrated water vapour observations in the Caribbean arc from a network of ground-based GNSS receivers during EUREC4A / Olivier Bock in Earth System Science Data, vol 13 n° 5 (May 2021)
PermalinkIWV retrieval from ground GNSS receivers during NAWDEX / Pierre Bosser in Advances in geosciences, vol 55 ([01/02/2021])
PermalinkCopula-based modeling of dependence structure in geodesy and GNSS applications: case study for zenith tropospheric delay in complex terrain / Roya Mousavian in GPS solutions, vol 25 n° 1 (January 2021)
PermalinkImproving smartphone-based GNSS positioning using state space augmentation techniques / Francesco Darugna (2021)
PermalinkEstimation of tropospheric wet refractivity using tomography method and artificial neural networks in Iranian case study / Mir Reza Ghaffari Razin in GPS solutions, Vol 24 n° 3 (July 2020)
PermalinkPerformance of real-time undifferenced precise positioning assisted by remote IGS multi-GNSS stations / Zhiqiang Liu in GPS solutions, vol 24 n° 2 (April 2020)
Permalink