Descripteur



Etendre la recherche sur niveau(x) vers le bas
Noise removal from hyperspectral image with joint spectral–spatial distributed sparse representation / Jie Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)
![]()
[article]
Titre : Noise removal from hyperspectral image with joint spectral–spatial distributed sparse representation Type de document : Article/Communication Auteurs : Jie Li, Auteur ; Qiangqiang Yuan, Auteur ; Huanfeng Shen, Auteur ; Liangpei Zhang, Auteur Année de publication : 2016 Article en page(s) : pp 5425 - 5439 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] bruit (théorie du signal)
[Termes descripteurs IGN] données clairsemées
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] Représentation incomplèteRésumé : (Auteur) Hyperspectral image (HSI) denoising is a crucial preprocessing task that is used to improve the quality of images for object detection, classification, and other subsequent applications. It has been reported that noise can be effectively removed using the sparsity in the nonnoise part of the image. With the appreciable redundancy and correlation in HSIs, the denoising performance can be greatly improved if this redundancy and correlation is utilized efficiently in the denoising process. Inspired by this observation, a noise reduction method based on joint spectral-spatial distributed sparse representation is proposed for HSIs, which exploits the intraband structure and the interband correlation in the process of joint sparse representation and joint dictionary learning. In joint spectral-spatial sparse coding, the interband correlation is exploited to capture the similar structure and maintain the spectral continuity. The intraband structure is utilized to adaptively code the spatial structure differences of the different bands. Furthermore, using a joint dictionary learning algorithm, we obtain a dictionary that simultaneously describes the content of the different bands. Experiments on both synthetic and real hyperspectral data show that the proposed method can obtain better results than the other classic methods. Numéro de notice : A2016-902 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : http://dx.doi.org/10.1109/TGRS.2016.2564639 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83095
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 9 (September 2016) . - pp 5425 - 5439[article]Hyperspectral and multispectral image fusion based on a sparse representation / Qi Wei in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Hyperspectral and multispectral image fusion based on a sparse representation Type de document : Article/Communication Auteurs : Qi Wei, Auteur ; José Bioucas-Dias, Auteur ; Nicolas Dobigeon, Auteur ; Jean-Yves Tourneret, Auteur Année de publication : 2015 Article en page(s) : pp 3658 - 3668 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] décomposition d'image
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] problème inverse
[Termes descripteurs IGN] Représentation incomplèteRésumé : (Résumé) This paper presents a variational-based approach for fusing hyperspectral and multispectral images. The fusion problem is formulated as an inverse problem whose solution is the target image assumed to live in a lower dimensional subspace. A sparse regularization term is carefully designed, relying on a decomposition of the scene on a set of dictionaries. The dictionary atoms and the supports of the corresponding active coding coefficients are learned from the observed images. Then, conditionally on these dictionaries and supports, the fusion problem is solved via alternating optimization with respect to the target image (using the alternating direction method of multipliers) and the coding coefficients. Simulation results demonstrate the efficiency of the proposed algorithm when compared with state-of-the-art fusion methods. Numéro de notice : A2015-315 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76564
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3658 - 3668[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve 3L Disponible Spectral–spatial hyperspectral image classification via multiscale adaptive sparse representation / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 12 (December 2014)
![]()
[article]
Titre : Spectral–spatial hyperspectral image classification via multiscale adaptive sparse representation Type de document : Article/Communication Auteurs : Leyuan Fang, Auteur ; Shutao Li, Auteur ; Xudong Kang, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 7738 - 7749 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] analyse multiéchelle
[Termes descripteurs IGN] classification spectrale
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] Représentation incomplèteRésumé : (Auteur) Sparse representation has been demonstrated to be a powerful tool in classification of hyperspectral images (HSIs). The spatial context of an HSI can be exploited by first defining a local region for each test pixel and then jointly representing pixels within each region by a set of common training atoms (samples). However, the selection of the optimal region scale (size) for different HSIs with different types of structures is a nontrivial task. In this paper, considering that regions of different scales incorporate the complementary yet correlated information for classification, a multiscale adaptive sparse representation (MASR) model is proposed. The MASR effectively exploits spatial information at multiple scales via an adaptive sparse strategy. The adaptive sparse strategy not only restricts pixels from different scales to be represented by training atoms from a particular class but also allows the selected atoms for these pixels to be varied, thus providing an improved representation. Experiments on several real HSI data sets demonstrate the qualitative and quantitative superiority of the proposed MASR algorithm when compared to several well-known classifiers. Numéro de notice : A2014-639 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2317499 En ligne : https://doi.org/10.1109/TGRS.2014.2317499 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75076
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 12 (December 2014) . - pp 7738 - 7749[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014121 RAB Revue Centre de documentation En réserve 3L Disponible