Descripteur
Documents disponibles dans cette catégorie (1691)


Etendre la recherche sur niveau(x) vers le bas
Forest age and topographic position jointly shape the species richness and composition of vascular plants in karstic habitats / Zoltán Bátori in Annals of Forest Science, vol 80 n° 1 (2023)
![]()
[article]
Titre : Forest age and topographic position jointly shape the species richness and composition of vascular plants in karstic habitats Type de document : Article/Communication Auteurs : Zoltán Bátori, Auteur ; Csaba Tölgyesi, Auteur ; Gábor Li, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] âge du peuplement forestier
[Termes IGN] changement climatique
[Termes IGN] gestion forestière
[Termes IGN] habitat d'espèce
[Termes IGN] karst
[Termes IGN] pente
[Termes IGN] topographie locale
[Termes IGN] Tracheophyta
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Key message: Dolines may provide important safe havens for many plant species and play a key role in maintaining biodiversity. The combined effects of forest age and topographic position influence the biodiversity patterns of these unique habitats. Forest managers, conservationists, and researchers need to work together in order to maintain the species richness and composition of these habitats under environmental changes.
Context: Dolines are the most prominent geomorphological features in many karst landscapes that may provide important microhabitats for many species.
Aims: We aim to contribute to a better understanding of how forest age and topographic position influence the plant species richness and composition of vascular plants within doline habitats.
Methods: We studied the effects of forest age (four age classes: from 5- to 10-year-old stands to more than 90-year-old stands), topographic position (south-facing slope, bottom, and north-facing slope), and their interaction on the distribution of vascular plants and mean Ellenberg indicator values in dolines using detrended correspondence analysis and mixed-effects models. Diagnostic species for the forest age classes and topographic positions were also determined.
Results: Different groups of vascular plant species usually showed significant preferences for certain topographic positions and/or forest age classes in dolines. In general, the number of species in all studied groups of plants increased after a few years of canopy removal. The number of plant species in almost all groups was lowest in dolines covered with 40–45-year-old forests. The moist and nutrient-rich doline bottoms covered with 90–120-year-old forests harboured many climate change vulnerable plant species.
Conclusions: Forest age and topographic position considerably influence the species richness and composition of vascular plants in dolines; therefore, forest managers and conservationists need to consider their potential impacts when evaluating the effects of climate warming on karst landscapes.Numéro de notice : A2023-188 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-023-01183-x Date de publication en ligne : 31/03/2023 En ligne : https://doi.org/10.1186/s13595-023-01183-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102967
in Annals of Forest Science > vol 80 n° 1 (2023) . - n° 16[article]Linking structure and species richness to support forest biodiversity monitoring at large scales / Félix Storch in Annals of Forest Science, vol 80 n° 1 (2023)
![]()
[article]
Titre : Linking structure and species richness to support forest biodiversity monitoring at large scales Type de document : Article/Communication Auteurs : Félix Storch, Auteur ; Steffen Boch, Auteur ; Martin M. Gossner, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 3 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] biodiversité végétale
[Termes IGN] botanique systématique
[Termes IGN] écosystème forestier
[Termes IGN] gestion forestière durable
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] peuplement mélangé
[Termes IGN] protection de la biodiversité
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] surveillance de la végétation
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Key message: Authors have analyzed the possible correlation between measurements/indicators of forest structure and species richness of many taxonomic or functional groups over three regions of Germany. Results show the potential to use structural attributes as a surrogate for species richness of most of the analyzed taxonomic and functional groups. This information can be transferred to large-scale forest inventories to support biodiversity monitoring.
Context: We are currently facing a dramatic loss in biodiversity worldwide and this initiated many monitoring programs aiming at documenting further trends. However, monitoring species diversity directly is very resource demanding, in particular in highly diverse forest ecosystems.
Aims: We investigated whether variables applied in an index of stand structural diversity, which was developed based on forest attributes assessed in the German National Forest Inventory, can be calibrated against richness of forest-dwelling species within a wide range of taxonomic and functional groups.
Methods: We used information on forest structure and species richness that has been comprehensively assessed on 150 forest plots of the German biodiversity exploratories project, comprising a large range of management intensities in three regions. We tested, whether the forest structure index calculated for these forest plots well correlate with the number of species across 29 taxonomic and functional groups, assuming that the structural attributes applied in the index represent their habitat requirements.
Results: The strength of correlations between the structural variables applied in the index and number of species within taxonomic or functional groups was highly variable. For some groups such as Aves, Formicidae or vascular plants, structural variables had a high explanatory power for species richness across forest types. Species richness in other taxonomic and functional groups (e.g., soil and root-associated fungi) was not explained by individual structural attributes of the index. Results indicate that some taxonomic and functional groups depend on a high structural diversity, whereas others seem to be insensitive to it or even prefer structurally poor stands.
Conclusion: Therefore, combinations of forest stands with different degrees of structural diversity most likely optimize taxonomic diversity at the landscape level. Our results can support biodiversity monitoring through quantification of forest structure in large-scale forest inventories. Changes in structural variables over inventory periods can indicate changes in habitat quality for individual taxonomic groups and thus points towards national forest inventories being an effective tool to detect unintended effects of changes in forest management on biodiversity.Numéro de notice : A2023-144 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01169-1 Date de publication en ligne : 19/01/2023 En ligne : https://doi.org/10.1186/s13595-022-01169-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102720
in Annals of Forest Science > vol 80 n° 1 (2023) . - n° 3[article]A remote sensing assessment index for urban ecological livability and its application / Junbo Yu in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
![]()
[article]
Titre : A remote sensing assessment index for urban ecological livability and its application Type de document : Article/Communication Auteurs : Junbo Yu, Auteur ; Xinghua Li, Auteur ; Xiaobin Guan, Auteur ; Huanfeng Shen, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] afforestation
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] indicateur environnemental
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaine denseMots-clés libres : The proposed Ecological Livability Index (ELI) covers five primary ecological indicators – greenness, temperature, dryness, water-wetness, and atmospheric turbidity – which are geometrically aggregated by non-equal weights based on an entropy method. Résumé : (auteur) Remote sensing provides us with an approach for the rapid identification and monitoring of spatiotemporal changes in the urban ecological environment at different scales. This study aimed to construct a remote sensing assessment index for urban ecological livability with continuous fine spatiotemporal resolution data from Landsat and MODIS to overcome the dilemma of single image-based, single-factor analysis, due to the limitations of atmospheric conditions or the revisit period of satellite platforms. The proposed Ecological Livability Index (ELI) covers five primary ecological indicators – greenness, temperature, dryness, water-wetness, and atmospheric turbidity – which are geometrically aggregated by non-equal weights based on an entropy method. Considering multisource time-series data of each indicator, the ELI can quickly and comprehensively reflect the characteristics of the Ecological Livability Quality (ELQ) and is also comparable at different time scales. Based on the proposed ELI, the urban ecological livability in the central urban area of Wuhan, China, from 2002 to 2017, in the different seasons was analyzed every 5 years. The ELQ of Wuhan was found to be generally at the medium level (ELI ≈0.6) and showed an initial trend of degradation but then improved. Moreover, the ecological livability in spring and autumn and near rivers and lakes was found to be better, whereas urban expansion has led to the outward ecological degradation of Wuhan, but urban afforestation has enhanced the environment. In general, this paper demonstrates that the ELI has an exemplary embodiment in urban ecological research, which will support urban ecological protection planning and construction. Numéro de notice : A2022-612 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2072775 Date de publication en ligne : 14/06/2022 En ligne : https://doi.org/10.1080/10095020.2022.2072775 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101366
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023][article]Developing alternatives to adaptive silviculture: Thinning and tree growth resistance to drought in a Pinus species on an elevated gradient in Southern Spain / Rafael M. Navarro-Cerrillo in Forest ecology and management, vol 537 (June-1 2023)
![]()
[article]
Titre : Developing alternatives to adaptive silviculture: Thinning and tree growth resistance to drought in a Pinus species on an elevated gradient in Southern Spain Type de document : Article/Communication Auteurs : Rafael M. Navarro-Cerrillo, Auteur ; Antonio M. Cachinero-Vivar, Auteur ; Óscar Pérez-Priego, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 120936 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] croissance des arbres
[Termes IGN] dendroécologie
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] Espagne
[Termes IGN] gestion forestière adaptative
[Termes IGN] Pinus (genre)
[Termes IGN] régénération (sylviculture)
[Termes IGN] sécheresse
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Forest plantations are more vulnerable to the stress induced by biotic and abiotic factors than are naturally regenerated forests. These effects can be aggravated by a lack of management in large reforestation areas, and thinning could, therefore, help trees to reduce dieback and tree mortality related to drought. We address this question using a dendrochronology and modelling approach to improve the understanding of the growth response of high-density planted pine forests to thinning in drought-prone areas of Southern Spain. An experimental trial was, therefore, carried out with three species (Pinus halepensis, P. nigra, and P. sylvestris) and three thinning treatments (unthinned, moderate, and heavy thinning), after which growth-climate relationships and drought vulnerability indices were assessed. Three separate generalized linear mixed-effects models (GLMM), one for each species and location, were fitted using BAI as the response variable, and post-thinning growth trajectories and drought vulnerability indices were also simulated. Ten-year basal area showed strong growth responses following the thinning treatment (BAI10, 72% for P. halepensis and 50% for P. sylvestris as regards heavy thinning and 51% for P. nigra as regards moderate thinning), with different responses to precipitation and temperature according to species and thinning intensity. The significant effects of thinning on drought vulnerability indices indicated that the thinning treatments had a positive effect, irrespective of the pine species, although this was more evident in the case of P. sylvestris (recovery F = 28.10, p Numéro de notice : A2023-198 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2023.120936 Date de publication en ligne : 28/03/2023 En ligne : https://doi.org/10.1016/j.foreco.2023.120936 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103086
in Forest ecology and management > vol 537 (June-1 2023) . - n° 120936[article]Evenness mediates the global relationship between forest productivity and richness / Iris Hordijk in Journal of ecology, vol inconnu (2023)
![]()
[article]
Titre : Evenness mediates the global relationship between forest productivity and richness Type de document : Article/Communication Auteurs : Iris Hordijk, Auteur ; Daniel S. Maynard, Auteur ; et al., Auteur ; Olivier Bouriaud , Auteur
Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] forêt
[Termes IGN] futaie irrégulière
[Termes IGN] futaie régulière
[Termes IGN] productivité biologique
[Termes IGN] richesse floristique
[Vedettes matières IGN] ForesterieRésumé : (auteur) 1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale.
2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship.
3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive.
4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions.Numéro de notice : A2023-093 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.1111/1365-2745.14098 Date de publication en ligne : 02/05/2023 En ligne : https://doi.org/10.1111/1365-2745.14098 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103184
in Journal of ecology > vol inconnu (2023)[article]Impacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests / Joscha H. Menge in Landscape ecology, vol 38 n° 4 (April 2023)
PermalinkImproved parametrisation of a physically-based forest reflectance model for retrieval of boreal forest structural properties / Eelis Halme in Silva fennica, vol 57 n° 2 (April 2023)
PermalinkKeeping thinning-derived deadwood logs on forest floor improves soil organic carbon, microbial biomass, and enzyme activity in a temperate spruce forest / Meisam Nazari in European Journal of Forest Research, vol 142 n° 2 (April 2023)
PermalinkPyrenean silver fir forests retain legacies of past disturbances and climate change in their growth, structure and composition / Antonio Gazol in Forests, vol 14 n° 4 (April 2023)
PermalinkRegeneration in European beech forests after drought: the effects of microclimate, deadwood and browsing / Dominik Thom in European Journal of Forest Research, vol 142 n° 2 (April 2023)
PermalinkResource-based growth models reveal opportunities to mitigate climate change effects on beech regeneration by silvicultural measures / Jan F. Wilkens in Forest ecology and management, vol 532 (March-15 2023)
PermalinkForests attenuate temperature and air pollution discomfort in montane tourist areas / Elena Gottardini in Forests, vol 14 n° 3 (March 2023)
PermalinkMulti-sensor airborne lidar requires intercalibration for consistent estimation of light attenuation and plant area density / Grégoire Vincent in Remote sensing of environment, vol 286 (March 2023)
PermalinkResilience of Pyrenean forests after recurrent historical deforestations / Valenti Rull in Forests, vol 14 n° 3 (March 2023)
PermalinkUne sylviculture dynamique des chênaies sessiliflores favorise la résilience des arbres après une forte sécheresse / Anna Schmitt in Revue forestière française, vol 74 n° 1 (2023)
Permalink