Descripteur
Termes descripteurs IGN > sciences humaines et sociales > sociologie > société de l'information > contenu généré par les utilisateurs
contenu généré par les utilisateursVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Chinese tourists in Nordic countries: An analysis of spatio-temporal behavior using geo-located travel blog data / Yunhao Zheng in Computers, Environment and Urban Systems, vol 85 (January 2021)
![]()
[article]
Titre : Chinese tourists in Nordic countries: An analysis of spatio-temporal behavior using geo-located travel blog data Type de document : Article/Communication Auteurs : Yunhao Zheng, Auteur ; Naixia Mou, Auteur ; Lingxian Zhang, Auteur Année de publication : 2021 Article en page(s) : n° 101561 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] accès aux données localisées
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] climat
[Termes descripteurs IGN] comportement
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] géomercatique
[Termes descripteurs IGN] GeoWeb
[Termes descripteurs IGN] ressources web
[Termes descripteurs IGN] Scandinavie
[Termes descripteurs IGN] tourisme
[Termes descripteurs IGN] voyage
[Termes descripteurs IGN] zone boréaleRésumé : (auteur) Geo-located travel blogs, a new data source, enable to achieve more detailed analysis of tourists' spatio-temporal behavior. Taking Chinese tourists in Nordic countries as the research object, this paper focuses on their behavior, seasonal patterns and complex network effects by using geo-located travel blog data collected from Qunar.com. The results show that: (1) Chinese tourists visiting Nordic countries are often experienced in traveling. The local climate during the cold season does not prevent them from pursuing the aurora scenery. (2) The travel behavior of Chinese tourists is spatially heterogeneous. The network analysis reveals that Iceland showcases stronger, compared to the other Nordic countries, community independence and small world effect. (3) During the warm season, Chinese tourists choose a variety of destinations, while in cold season, they tend to choose destinations with higher chances for spotting the northern lights. These results provide helpful information for the tourism management departments of Nordic countries to improve their marketing and development efforts directed for Chinese tourists. Numéro de notice : A2021-006 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2020.101561 date de publication en ligne : 13/10/2020 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101561 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96280
in Computers, Environment and Urban Systems > vol 85 (January 2021) . - n° 101561[article]Exploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
![]()
[article]
Titre : Exploring the heterogeneity of human urban movements using geo-tagged tweets Type de document : Article/Communication Auteurs : Ding Ma, Auteur ; Toshihiro Osaragi, Auteur ; Takuya Oki, Auteur ; Bin Jiang, Auteur Année de publication : 2020 Article en page(s) : pp 2475 -2 496 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] espace urbain
[Termes descripteurs IGN] flux de données
[Termes descripteurs IGN] géoétiquetage
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] hétérogénéité
[Termes descripteurs IGN] Londres
[Termes descripteurs IGN] migration humaine
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modèle orienté agent
[Termes descripteurs IGN] population urbaine
[Termes descripteurs IGN] Tokyo (Japon)
[Termes descripteurs IGN] TwitterRésumé : (auteur) The availability of vast amounts of location-based data from social media platforms such as Twitter has enabled us to look deeply into the dynamics of human movement. The aim of this paper is to leverage a large collection of geo-tagged tweets and the street networks of two major metropolitan areas—London and Tokyo—to explore the underlying mechanism that determines the heterogeneity of human mobility patterns. For the two target cities, hundreds of thousands of tweet locations and road segments were processed to generate city hotspots and natural streets. User movement trajectories and city hotspots were then used to build a hotspot network capable of quantitatively characterizing the heterogeneous movement patterns of people within the cities. To emulate observed movement patterns, the study conducts a two-level agent-based simulation that includes random walks through the hotspot networks and movements in the street networks using each of three distance types—metric, angular and combined. Comparisons of the simulated and observed movement flows at the segment and street levels show that the heterogeneity of human urban movements at the collective level is mainly shaped by the scaling structure of the urban space. Numéro de notice : A2020-692 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1718153 date de publication en ligne : 24/01/2020 En ligne : https://doi.org/10.1080/13658816.2020.1718153 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96233
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2475 -2 496[article]How urban places are visited by social groups? Evidence from matrix factorization on mobile phone data / Chaogui Kang in Transactions in GIS, Vol 24 n° 6 (December 2020)
![]()
[article]
Titre : How urban places are visited by social groups? Evidence from matrix factorization on mobile phone data Type de document : Article/Communication Auteurs : Chaogui Kang, Auteur ; Li Shi, Auteur ; Fahui Wang, Auteur ; Yu Liu, Auteur Année de publication : 2020 Article en page(s) : pp 1504 - 1525 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] ethnographie
[Termes descripteurs IGN] factorisation de matrice non-négative
[Termes descripteurs IGN] matrice de co-occurrence
[Termes descripteurs IGN] production participative
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] site urbain
[Termes descripteurs IGN] téléphonie mobile
[Termes descripteurs IGN] urbanismeRésumé : (Auteur) This research attempts to build a unified framework for distinguishing the spatiotemporal visit patterns of urban places by different social groups using mobile phone data in Harbin, China. Social groups are detected by their social ties in the ego‐to‐ego mobile phone call network and are embedded in physical space according to their home locations. Popular urban places are detected from user‐generated content as the basic spatial analysis unit. Coupling subscribers’ footprints and urban places in physical space, the spatiotemporal visit patterns of urban places by distinct social groups are uncovered and interpreted by non‐negative matrix factorization. The proposed framework enables us to answer several critical questions from three perspectives: (1) How to model popular urban places in terms of vague boundary, land use, and semantic features based on crowdsourcing data?; (2) How to evaluate interaction between individuals for inspecting the relationship between spatial proximity and social ties based on spatiotemporal co‐occurrence?; and (3) How to distinguish urban place visit preferences for social groups associated with different socio‐demographic characteristics? Our research could assist urban planners and municipal managers to identify critical urban places frequented by different population groups according to their roles and social/cultural characteristics for improvement of urban facility allocation. Numéro de notice : A2020-767 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12654 date de publication en ligne : 30/06/2020 En ligne : https://doi.org/10.1111/tgis.12654 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96658
in Transactions in GIS > Vol 24 n° 6 (December 2020) . - pp 1504 - 1525[article]Social media as passive geo-participation in transportation planning – how effective are topic modeling & sentiment analysis in comparison with citizen surveys? / Oliver Lock in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
![]()
[article]
Titre : Social media as passive geo-participation in transportation planning – how effective are topic modeling & sentiment analysis in comparison with citizen surveys? Type de document : Article/Communication Auteurs : Oliver Lock, Auteur ; Chris Pettit, Auteur Année de publication : 2020 Article en page(s) : pp 275 - 292 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] artefact
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] planification urbaine
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] sentiment
[Termes descripteurs IGN] Sydney (Nouvelle-Galles du Sud)
[Termes descripteurs IGN] traitement du langage naturel
[Termes descripteurs IGN] transport public
[Termes descripteurs IGN] ville intelligenteRésumé : (auteur) We live in an era of rapid urbanization as many cities are experiencing an unprecedented rate of population growth and congestion. Public transport is playing an increasingly important role in urban mobility with a need to move people and goods efficiently around the city. With such pressures on existing public transportation systems, this paper investigates the opportunities to use social media to more effectively engage with citizens and customers using such services. This research forms a case study of the use of passively collected forms of big data in cities – focusing on Sydney, Australia. Firstly, it examines social media data (Tweets) related to public transport performance. Secondly, it joins this to longitudinal big data – delay information continuously broadcast by the network over a year, thus forming hundreds of millions of data artifacts. Topics, tones, and sentiment are modeled using machine learning and Natural Language Processing (NLP) techniques. These resulting data, and models, are compared to opinions derived from a citizen survey among users. The validity of such data and models versus the intentions of users, in the context of systems that monitor and improve transport performance, are discussed. As such, key recommendations for developing Smart Cities were formed in an applied research context based on these data and techniques. Numéro de notice : A2020-787 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2020.1815596 date de publication en ligne : 21/09/2020 En ligne : https://doi.org/10.1080/10095020.2020.1815596 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96545
in Geo-spatial Information Science > vol 23 n° 4 (December 2020) . - pp 275 - 292[article]Evaluating geo-tagged Twitter data to analyze tourist flows in Styria, Austria / Johannes Scholz in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Evaluating geo-tagged Twitter data to analyze tourist flows in Styria, Austria Type de document : Article/Communication Auteurs : Johannes Scholz, Auteur ; Janja Jeznik, Auteur Année de publication : 2020 Article en page(s) : n° 681 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse sémantique
[Termes descripteurs IGN] Autriche
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] méthode fondée sur le noyau
[Termes descripteurs IGN] tourisme
[Termes descripteurs IGN] TwitterRésumé : (auteur) The research focuses on detecting tourist flows in the Province of Styria in Austria based on crowdsourced data. Twitter data were collected in the time range from 2008 until August 2018. Extracted tweets were submitted to an extensive filtering process within non-relational database MongoDB. Hotspot Analysis and Kernel Density Estimation methods were applied, to investigate spatial distribution of tourism relevant tweets under temporal variations. Furthermore, employing the VADER method an integrated semantic analysis provides sentiments of extracted tweets. Spatial analyses showed that detected Hotspots correspond to typical Styrian touristic areas. Apart from mainly successful sentiment analysis, it pointed out also a problematic aspect of working with multilingual data. For evaluation purposes, the official tourism data from the Province of Styria and federal Statistical Office of Austria played a role of ground truth data. An evaluation with Pearson’s correlation coefficient was employed, which proves a statistically significant correlation between Twitter data and reference data. In particular, the paper shows that crowdsourced data on a regional level can serve as accurate indicator for the behaviour and movement of users. Numéro de notice : A2020-731 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110681 date de publication en ligne : 15/11/2020 En ligne : https://doi.org/10.3390/ijgi9110681 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96344
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 681[article]Streets of London: Using Flickr and OpenStreetMap to build an interactive image of the city / Azam Raha Bahrehdar in Computers, Environment and Urban Systems, vol 84 (November 2020)
PermalinkLos Angeles as a digital place: The geographies of user‐generated content / Andrea Ballatore in Transactions in GIS, Vol 24 n° 4 (August 2020)
PermalinkBehavior-based location recommendation on location-based social networks / Seyyed Mohammadreza Rahimi in Geoinformatica [en ligne], vol 24 n° 3 (July 2020)
PermalinkNeuroTPR: A neuro‐net toponym recognition model for extracting locations from social media messages / Jimin Wang in Transactions in GIS, Vol 24 n° 3 (June 2020)
PermalinkTraffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol 10 n° 1 (June 2020)
![]()
PermalinkA global analysis of cities’ geosocial temporal signatures for points of interest hours of operation / Kevin Sparks in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
PermalinkUber movement data: a proxy for average one-way commuting times by car / Yeran Sun in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
PermalinkSimilarity measurement on human mobility data with spatially weighted structural similarity index (SpSSIM) / Chanwoo Jin in Transactions in GIS, Vol 24 n° 1 (February 2020)
PermalinkAnalyse spatio-temporelle des mobilités de randonneurs dans le PNR du Massif des Bauges / Colin Kerouanton (2020)
PermalinkModelling perceived risks to personal privacy from location disclosure on online social networks / Fatma S. Alrayes in International journal of geographical information science IJGIS, vol 34 n° 1 (January 2020)
Permalink