Descripteur
Documents disponibles dans cette catégorie (26)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Point cloud registration for LiDAR and photogrammetric data: A critical synthesis and performance analysis on classic and deep learning algorithms / Ningli Xu in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
[article]
Titre : Point cloud registration for LiDAR and photogrammetric data: A critical synthesis and performance analysis on classic and deep learning algorithms Type de document : Article/Communication Auteurs : Ningli Xu, Auteur ; Rongjun Qin, Auteur ; Shuang Song, Auteur Année de publication : 2023 Article en page(s) : n° 100032 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] chevauchement
[Termes IGN] données lidar
[Termes IGN] processus gaussien
[Termes IGN] recalage de données localisées
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesRésumé : (auteur) Three-dimensional (3D) point cloud registration is a fundamental step for many 3D modeling and mapping applications. Existing approaches are highly disparate in the data source, scene complexity, and application, therefore the current practices in various point cloud registration tasks are still ad-hoc processes. Recent advances in computer vision and deep learning have shown promising performance in estimating rigid/similarity transformation between unregistered point clouds of complex objects and scenes. However, their performances are mostly evaluated using a limited number of datasets from a single sensor (e.g. Kinect or RealSense cameras), lacking a comprehensive overview of their applicability in photogrammetric 3D mapping scenarios. In this work, we provide a comprehensive review of the state-of-the-art (SOTA) point cloud registration methods, where we analyze and evaluate these methods using a diverse set of point cloud data from indoor to satellite sources. The quantitative analysis allows for exploring the strengths, applicability, challenges, and future trends of these methods. In contrast to existing analysis works that introduce point cloud registration as a holistic process, our experimental analysis is based on its inherent two-step process to better comprehend these approaches including feature/keypoint-based initial coarse registration and dense fine registration through cloud-to-cloud (C2C) optimization. More than ten methods, including classic hand-crafted, deep-learning-based feature correspondence, and robust C2C methods were tested. We observed that the success rate of most of the algorithms are fewer than 40% over the datasets we tested and there are still are large margin of improvement upon existing algorithms concerning 3D sparse corresopondence search, and the ability to register point clouds with complex geometry and occlusions. With the evaluated statistics on three datasets, we conclude the best-performing methods for each step and provide our recommendations, and outlook future efforts. Numéro de notice : A2023-149 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2023.100032 Date de publication en ligne : 16/02/2023 En ligne : https://doi.org/10.1016/j.ophoto.2023.100032 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102808
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 8 (April 2023) . - n° 100032[article]Bayesian hyperspectral image super-resolution in the presence of spectral variability / Fei Ye in IEEE Transactions on geoscience and remote sensing, vol 60 n° 12 (December 2022)
[article]
Titre : Bayesian hyperspectral image super-resolution in the presence of spectral variability Type de document : Article/Communication Auteurs : Fei Ye, Auteur ; Zebin Wu, Auteur ; Yang Xu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5545613 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] processus gaussien
[Termes IGN] réflectance
[Termes IGN] signature spectrale
[Termes IGN] théorème de BayesRésumé : (auteur) Synthesizing a high-resolution (HR) hyperspectral image (HSI) by merging a low-resolution (LR) HSI with a corresponding HR multispectral image (MSI) has become a promising HSI super-resolution scheme. Most existing HSI-MSI fusion methods are effective to some extent, while several challenges remain. First, the spectral response of a given material exhibits considerable variability due to different acquisition times and conditions, however, variations in spectral signatures are often neglected. Second, a majority of off-the-shelf methods require predefined degradation operators, which can be unavailable in practice. To tackle the above issues, we introduce a novel fusion approach with a Bayesian framework. Specifically, we regard the up-sampled LR-HSI as the low-frequency component of the underlying HR-HSI. We characterize the texture features of high- and low-frequency components, respectively, which can enlarge modeling capacity and bypass the absence of degradation operators. Furthermore, we depict the relative smoothness of reflectance spectra with the Gaussian process. Extensive experiments on synthesized and real datasets illustrate the superiority of the proposed strategy in terms of fusion performance and robustness to spectral variability. Numéro de notice : A2022-908 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3228313 Date de publication en ligne : 12/12/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3228313 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102339
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 12 (December 2022) . - n° 5545613[article]Improving accuracy of local geoid model using machine learning approaches and residuals of GPS/levelling geoid height / Mosbeh R. Kaloop in Survey review, vol 54 n° 387 (November 2022)
[article]
Titre : Improving accuracy of local geoid model using machine learning approaches and residuals of GPS/levelling geoid height Type de document : Article/Communication Auteurs : Mosbeh R. Kaloop, Auteur ; Samui Pijush, Auteur ; Mostafa Rabah, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 505 - 518 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] apprentissage automatique
[Termes IGN] géoïde gravimétrique
[Termes IGN] géoïde local
[Termes IGN] Koweit
[Termes IGN] MNS SRTM
[Termes IGN] modèle de géopotentiel
[Termes IGN] nivellement avec assistance GPS
[Termes IGN] processus gaussien
[Termes IGN] régression
[Termes IGN] régression multivariée par spline adaptative
[Termes IGN] résiduRésumé : (auteur) This study aims to use GPS/Levelling data and machine learning techniques (MLs) to model a high precision local geoid for Kuwait. To improve the accuracy of a local geoid the global geopotential model and local terrain effect should be incorporated. The geoid model was improved based on the modelling of geoid residuals using three MLs. Minimax Probability Machine Regression (MPMR), Gaussian Process Regression (GPR), and Multivariate Adaptive Regression Splines (MARS) MLs were developed for modelling the calculated geoid residuals. The results show that the accuracy of the three MLs was improved compared to previous studies, and the accuracy of the GPR model was better than the other models. The standard deviations of Kuwait geoid undulation determined by GPS/Levelling, gravimetric, and developed GPR models were 1.377, 1.375, 1.375 m, respectively. Thus, the developed GPR model has successfully predicted an accurate geoid height of Kuwait with maximum variation approaches ±0.02 m. Numéro de notice : A2022-829 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1970918 Date de publication en ligne : 27/08/2021 En ligne : https://doi.org/10.1080/00396265.2021.1970918 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102013
in Survey review > vol 54 n° 387 (November 2022) . - pp 505 - 518[article]Multi-objective optimization of urban environmental system design using machine learning / Peiyuan Li in Computers, Environment and Urban Systems, vol 94 (June 2022)
[article]
Titre : Multi-objective optimization of urban environmental system design using machine learning Type de document : Article/Communication Auteurs : Peiyuan Li, Auteur ; Tianfang Xu, Auteur ; Shiqi Wei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101796 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] algorithme génétique
[Termes IGN] apprentissage automatique
[Termes IGN] dioxyde de carbone
[Termes IGN] ilot thermique urbain
[Termes IGN] indicateur environnemental
[Termes IGN] milieu urbain
[Termes IGN] optimisation (mathématiques)
[Termes IGN] planification urbaine
[Termes IGN] processus gaussien
[Termes IGN] régression
[Termes IGN] végétationRésumé : (auteur) The efficacy of urban mitigation strategies for heat and carbon emissions relies heavily on local urban characteristics. The continuous development and improvement of urban land surface models enable rather accurate assessment of the environmental impact on urban development strategies, whereas physically-based simulations remain computationally costly and time consuming, as a consequence of the increasing complexity of urban system dynamics. Hence it is imperative to develop fast, efficient, and economic operational toolkits for urban planners to foster the design, implementation, and evaluation of urban mitigation strategies, while retaining the accuracy and robustness of physical models. In this study, we adopt a machine learning (ML) algorithm, viz. Gaussian Process Regression, to emulate the physics of heat and biogenic carbon exchange in the built environment. The ML surrogate is trained and validated on the simulation results generated by a state-of-the-art single-layer urban canopy model over a wide range of urban characteristics, showing high accuracy in capturing heat and carbon dynamics. Using the validated surrogate model, we then conduct multi-objective optimization using the genetic algorithm to optimize urban design scenarios for desirable urban mitigation effects. While the use of urban greenery is found effective in mitigating both urban heat and carbon emissions, there is manifest trade-offs among ameliorating diverse urban environmental indicators. Numéro de notice : A2022-244 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101796 Date de publication en ligne : 18/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101796 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100184
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101796[article]A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance / Shuo Shi in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
[article]
Titre : A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Lu Xu, Auteur ; Wei Gong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] chlorophylle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] écosystème forestier
[Termes IGN] feuille (végétation)
[Termes IGN] modèle de transfert radiatif
[Termes IGN] processus gaussien
[Termes IGN] réflectance spectrale
[Termes IGN] régressionRésumé : (auteur) Forest leaf chlorophyll (Cab) and carotenoid (Cxc) are key functional indicators for the state of the forest ecosystem. Current machine learning models based on hyperspectral reflectance are widely applied to estimate leaf Cab and Cxc contents at leaf scale. However, these models have certain accuracy for non-independent datasets but have poor generalization for independent datasets when they are used to estimate leaf Cab and Cxc contents. This fact limits that hyperspectral remote sensing completely replaces destructive measurements for leaf Cab and Cxc contents. Thus, the development of an estimation model with high accuracy and satisfactory generalization is necessary. Convolutional neural networks (CNNs) have certain accuracy and generalization in many domains, and have the potential to solve above-mentioned problem. Therefore, this study developed a CNN using one-dimensional hyperspectral reflectance, which aimed to improve the model's accuracy and generalization in leaf Cab and Cxc content estimation at leaf scale. The proposed CNN was developed by three steps. First, in consideration of the correlation between leaf Cab and Cxc contents in natural leaves, 2500 physical data with leaf reflectance and corresponding Cab and Cxc contents were generated by leaf radiative transfer model and multivariable gaussian distribution function. Then, the proposed CNN was built by five strategies based on the architecture of the AlexNet. Finally, five-fold cross validation was performed with 70% of the physical data to determine the best strategy to develop the proposed CNN. These were executed to ensure the proposed CNN with the maximum accuracy and generalization. In addition, the accuracy and generalization of the proposed CNN were tested using a non-independent dataset and an independent dataset, respectively. The proposed CNN was also compared with back propagation neural network (BPNN), support vector regression (SVR) and gaussian process regression (GPR). Results showed that the best CNN could be developed with one input, five convolutional, three max-pooling and three fully-connected layers. Comprehensively considering the model's accuracy and generalization, the proposed CNN was the best model for leaf Cab and Cxc content estimation compared with BPNN, SVR and GPR. This study provides a development strategy of CNN estimation model using one-dimensional hyperspectral reflectance at leaf scale. The proposed CNN could further promote the practical application of hyperspectral remote sensing in leaf Cab and Cxc content estimation. Numéro de notice : A2022-231 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102719 Date de publication en ligne : 16/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100119
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102719[article]Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection / David Alejandro Jimenez-Sierra in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)PermalinkA robust nonrigid point set registration framework based on global and intrinsic topological constraints / Guiqiang Yang in The Visual Computer, vol 38 n° 2 (February 2022)PermalinkFootprint size design of large-footprint full-waveform LiDAR for forest and topography applications: A theoretical study / Xuebo Yang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)PermalinkGaussian mixture model of ground filtering based on hierarchical curvature constraints for airborne Lidar point clouds / Longjie Ye in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)PermalinkEnsemble learning methods on the space of covariance matrices : application to remote sensing scene and multivariate time series classification / Sara Akodad (2021)PermalinkTime-series analysis of massive satellite images : Application to earth observation / Alexandre Constantin (2021)PermalinkCharacterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale / Chen Yang in Geo-spatial Information Science, vol 23 n° 4 (December 2020)PermalinkMultistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data / Christian Geiss in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)PermalinkIndoor point cloud segmentation using iterative Gaussian mapping and improved model fitting / Bufan Zhao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)PermalinkOptimizing local geoid undulation model using GPS/levelling measurements and heuristic regression approaches / Mosbeh R. Kaloop in Survey review, vol 52 n° 375 (November 2020)Permalink