Descripteur
Documents disponibles dans cette catégorie (36)



Etendre la recherche sur niveau(x) vers le bas
Histograms of oriented mosaic gradients for snapshot spectral image description / Lulu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)
![]()
[article]
Titre : Histograms of oriented mosaic gradients for snapshot spectral image description Type de document : Article/Communication Auteurs : Lulu Chen, Auteur ; Yong-Qiang Zhao, Auteur ; Jonathan Cheung-Wai Chan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 79 - 93 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] capteur multibande
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre spectral
[Termes IGN] histogramme
[Termes IGN] image proche infrarouge
[Termes IGN] image spectrale
[Termes IGN] mosaïque d'images
[Termes IGN] poursuite de cible
[Termes IGN] temps instantanéRésumé : (auteur) This paper presents a feature descriptor using Histogram of Oriented Mosaic Gradient (HOMG) that extracts spatial-spectral features directly from mosaic spectral images. Spectral imaging utilizes unique spectral signatures to distinguish objects of interest in the scene more discriminatively. Snapshot spectral cameras equipped with spectral filter arrays (SFAs) capture spectral videos in real time, making it possible to detect/track fast moving targets based on spectral imaging. How to effectively extract the spatial-spectral feature directly from the mosaic spectral images acquired by snapshot spectral cameras is a core issue for detection/tracking. So far, there is a lack of comprehensive and in-depth research on this issue. To this end, this paper proposed a new spatial-spectral feature extractor for mosaic spectral images. The proposed scheme finds two forms of SFA neighborhood (SFAN) to construct a feature extractor suitable for any SFA structure. Exploiting the spatial-spectral correlation in two SFANs, we design six mosaic spatial-spectral gradient operators to compute spatial-spectral gradient maps (SGMs). HOMG descriptors are constructed using the magnitude and orientation of SGMs. The effectiveness and generalizability of the proposed method have been verified with object tracking experiments. Compared to the state-of-the-art feature descriptors, HOMG ranked first on two datasets captured with snapshot spectral camera with different SFAs, achieving a gain of 3.9% and 5.9% in average success rate over the second-ranked feature. Numéro de notice : A2022-010 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.10.018 Date de publication en ligne : 12/11/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.10.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99058
in ISPRS Journal of photogrammetry and remote sensing > vol 183 (January 2022) . - pp 79 - 93[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022011 SL Revue Centre de documentation Revues en salle Disponible 081-2022013 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Building detection with convolutional networks trained with transfer learning / Simon Šanca in Geodetski vestnik, vol 65 n° 4 (December 2021 - February 2022)
![]()
[article]
Titre : Building detection with convolutional networks trained with transfer learning Type de document : Article/Communication Auteurs : Simon Šanca, Auteur ; Krištof Oštir, Auteur ; Alen Mangafić, Auteur Année de publication : 2021 Article en page(s) : pp 559 - 576 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification automatique d'objets
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] données cadastrales
[Termes IGN] image aérienne
[Termes IGN] image infrarouge couleur
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] orthoimage couleur
[Termes IGN] segmentation d'image
[Termes IGN] SlovénieRésumé : (Auteur) Building footprint detection based on orthophotos can be used to update the building cadastre. In recent years deep learning methods using convolutional neural networks have been increasingly used around the world. We present an example of automatic building classification using our datasets made of colour near-infrared orthophotos (NIR-R-G) and colour orthophotos (R-G-B). Building detection using pretrained weights from two large scale datasets Microsoft Common Objects in Context (MS COCO) and ImageNet was performed and tested. We applied the Mask Region Convolutional Neural Network (Mask R-CNN) to detect the building footprints. The purpose of our research is to identify the applicability of pre-trained neural networks on the data of another colour space to build a classification model without re-learning. Numéro de notice : A2021-930 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.15292/geodetski-vestnik.2021.04.559-593 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.15292/geodetski-vestnik.2021.04.559-593 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99409
in Geodetski vestnik > vol 65 n° 4 (December 2021 - February 2022) . - pp 559 - 576[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 139-2021041 SL Revue Centre de documentation Revues en salle Disponible Field scale wheat LAI retrieval from multispectral Sentinel 2A-MSI and LandSat 8-OLI imagery: effect of atmospheric correction, image resolutions and inversion techniques / Rajkumar Dhakar in Geocarto international, vol 36 n° 18 ([01/10/2021])
![]()
[article]
Titre : Field scale wheat LAI retrieval from multispectral Sentinel 2A-MSI and LandSat 8-OLI imagery: effect of atmospheric correction, image resolutions and inversion techniques Type de document : Article/Communication Auteurs : Rajkumar Dhakar, Auteur ; Vinay Kumar Sehgal, Auteur ; Debasish Chakraborty, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2044 - 2064 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] blé (céréale)
[Termes IGN] correction atmosphérique
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] Inde
[Termes IGN] indice foliaire
[Termes IGN] Leaf Area Index
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réseau neuronal artificielRésumé : (auteur) This study assessed the effect of atmospheric correction algorithms, inversion techniques and image spatial and spectral resolution on wheat crop LAI retrieval using Sentinel-2 MSI and Landsat-8 OLI imagery. The LAI retrievals were validated with in-situ measurements collected in farmers’ fields. The MSI-based LAI retrievals improved significantly when images were atmospherically corrected using MODTRAN than using the libRadtran code. Among the two PROSAIL inversion approaches, look-up table outperforms artificial neural network for LAI retrievals. Using the best strategy of atmospheric correction and inversion, the effect of spatial resolution from 20 m (MSI) to 30 m (OLI) while using common six bands, showed non-significant improvement in LAI retrievals. The inclusion of additional two red-edge bands as available in MSI significantly reduced the uncertainly in LAI retrievals over that obtained by using six bands, while inclusion of only additional VNIR band did not show any significant effect on LAI retrievals. Numéro de notice : A2021-742 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1687591 Date de publication en ligne : 12/11/2019 En ligne : https://doi.org/10.1080/10106049.2019.1687591 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98666
in Geocarto international > vol 36 n° 18 [01/10/2021] . - pp 2044 - 2064[article]Spectral reflectance estimation of UAS multispectral imagery using satellite cross-calibration method / Saket Gowravaram in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)
![]()
[article]
Titre : Spectral reflectance estimation of UAS multispectral imagery using satellite cross-calibration method Type de document : Article/Communication Auteurs : Saket Gowravaram, Auteur ; Haiyang Chao, Auteur ; Andrew Molthan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 735 - 746 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aéronef
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] étalonnage croisé
[Termes IGN] forêt
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-8
[Termes IGN] image multibande
[Termes IGN] image proche infrarouge
[Termes IGN] Kansas (Etats-Unis ; état)
[Termes IGN] orthoimage
[Termes IGN] orthorectification
[Termes IGN] prairie
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance spectraleRésumé : (Auteur) This paper introduces a satellite-based cross-calibration (SCC) method for spectral reflectance estimation of unmanned aircraft system (UAS) multispectral imagery. The SCC method provides a low-cost and feasible solution to convert high-resolution UAS images in digital numbers (DN) to reflectance when satellite data is available. The proposed method is evaluated using a multispectral data set, including orthorectified KHawk UAS DN imagery and Landsat 8 Operational Land Imager Level-2 surface reflectance (SR) data over a forest/grassland area. The estimated UAS reflectance images are compared with the National Ecological Observatory Network's imaging spectrometer (NIS) SR data for validation. The UAS reflectance showed high similarities with the NIS data for the near-infrared and red bands with Pearson's r values being 97 and 95.74, and root-mean-square errors being 0.0239 and 0.0096 over a 32-subplot hayfield. Numéro de notice : A2021-676 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00091R2 En ligne : https://doi.org/10.14358/PERS.20-00091R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98863
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 10 (October 2021) . - pp 735 - 746[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021101 SL Revue Centre de documentation Revues en salle Disponible Detecting high-temperature anomalies from Sentinel-2 MSI images / Yongxue Liu in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)
![]()
[article]
Titre : Detecting high-temperature anomalies from Sentinel-2 MSI images Type de document : Article/Communication Auteurs : Yongxue Liu, Auteur ; Zhi Weifeng, Auteur ; Bihua Xu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 174 - 193 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] anomalie thermique
[Termes IGN] éruption volcanique
[Termes IGN] image aérienne
[Termes IGN] image Landsat-OLI
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] image thermique
[Termes IGN] incendie
[Termes IGN] réflectance spectrale
[Termes IGN] risque technologique
[Termes IGN] série temporelle
[Termes IGN] température au solRésumé : (Auteur) High-temperature anomalies (HTAs) of the earth's surface, such as fires, volcanic activities, and industrial heat sources, have a profound impact on Earth's system. Sentinel-2 Multispectral Instrument (MSI) provides spatially-specific information for precisely measuring the location and extent of HTAs at a fine scale. However, detecting HTAs from MSI images remains challenging because the emitted radiance of an HTA in the short-wave infrared (SWIR) bands can be easily mixed with the reflected solar radiance background in the daytime; and an increasing number of atypical cases in MSI images need to be treated with the enhanced spatial resolution. A generic HTA detection approach that handles both anthropogenic and natural HTAs will broaden the scope of MSI applications. In this study, (i) we highlight two spectral characteristics of HTAs in the far-SWIR, near-SWIR, and NIR bands (i.e., (ρfar-SWIR - ρnear-SWIR)/ρNIR ≥ 0.45 and (ρfar-SWIR -ρnear-SWIR) ≥ ρnear-SWIR - ρNIR) that can effectively enhance HTAs from background geo-features, based on the reflectance spectra in airborne imaging spectrometer data. (ii) We propose a tri-spectral thermal anomaly index (TAI) that jointly uses the two high-temperature-sensitive SWIR bands and the high-temperature-insensitive NIR band to enhance HTAs, based on the above characteristics and a comprehensive sampling of different types of HTAs from 1,974 MSI images. (iii) We develop a TAI-based approach for MSI images to detect HTAs in general. The proposed approach was applied to detect different types of HTAs, including different biomass burnings, active volcanoes, and industrial HTAs, over a wide range of land-cover scenarios. Validations and comparisons demonstrate the proposed approach is reliable and performs better than the existing state-of-the-art HTA detection approaches. Evaluations on two types of small industrial HTAs, including operating kilns and enclosed landfill gas flares, show that the HTA detection probability of the TAI-based approach from time-series MSI images is ~ 84.91% and 88.23%, respectively. Further investigations show that the TAI-based approach also has good transferability in detecting HTAs from multispectral images acquired by Landsat-family satellites. Numéro de notice : A2021-372 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.05.008 Date de publication en ligne : 23/05/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.05.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97808
in ISPRS Journal of photogrammetry and remote sensing > vol 177 (July 2021) . - pp 174 - 193[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021071 SL Revue Centre de documentation Revues en salle Disponible 081-2021073 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt The use of land cover indices for rapid surface urban heat island detection from multi-temporal Landsat imageries / Nagihan Aslan in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)
PermalinkEstimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Turkey / Alkan Günlü in Geocarto international, vol 36 n° 8 ([01/05/2021])
PermalinkValidation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa / Tomoaki Miura in Remote sensing of environment, vol 257 (May 2021)
PermalinkShoreline changes along Northern Ibaraki Coast after the great East Japan earthquake of 2011 / Quang Nguyen Hao in Remote sensing, vol 13 n° 7 (April-1 2021)
PermalinkPermalinkMapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery / Astrid Helena Huechacona-Ruiz in Forests, vol 11 n°11 (November 2020)
PermalinkVNIR-SWIR superspectral mineral mapping: An example from Cuprite, Nevada / Kathleen E. Johnson in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 11 (November 2020)
PermalinkUse of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed / Qinghu Jiang in Remote sensing, vol 12 n° 18 (September-2 2020)
PermalinkPhysical, chemical and mechanical wood properties of Pinus nigra growing in Portugal / Alexandra Dias in Annals of Forest Science [en ligne], vol 77 n° 3 (September 2020)
PermalinkDevelopment and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping / Alvin B. Baloloy in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
Permalink