Descripteur
Termes IGN > 1-Candidats > modèle numérique de surface de la canopée
modèle numérique de surface de la canopée |
Documents disponibles dans cette catégorie (67)



Etendre la recherche sur niveau(x) vers le bas
Detection of growth change of young forest based on UAV RGB images at single-tree level / Xiaocheng Zhou in Forests, vol 14 n° 1 (January 2023)
![]()
[article]
Titre : Detection of growth change of young forest based on UAV RGB images at single-tree level Type de document : Article/Communication Auteurs : Xiaocheng Zhou, Auteur ; Hongyu Wang, Auteur ; Chongcheng Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 141 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Abies (genre)
[Termes IGN] âge du peuplement forestier
[Termes IGN] Chine
[Termes IGN] croissance des arbres
[Termes IGN] détection de changement
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] jeune arbre
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] surveillance forestièreRésumé : (auteur) With the rapid development of Unmanned Aerial Vehicle (UAV) technology, more and more UAVs have been used in forest survey. UAV (RGB) images are the most widely used UAV data source in forest resource management. However, there is some uncertainty as to the reliability of these data when monitoring height and growth changes of low-growing saplings in an afforestation plot via UAV RGB images. This study focuses on an artificial Chinese fir (Cunninghamia lancelota, named as Chinese Fir) young forest plot in Fujian, China. Divide-and-conquer (DAC) and the local maximum (LM) method for extracting seedling height are described in the paper, and the possibility of monitoring young forest growth based on low-cost UAV remote sensing images was explored. Two key algorithms were adopted and compared to extract the tree height and how it affects the young forest at single-tree level from multi-temporal UAV RGB images from 2019 to 2021. Compared to field survey data, the R2 of single saplings’ height extracted from digital orthophoto map (DOM) images of tree pits and original DSM information using a divide-and-conquer method reached 0.8577 in 2020 and 0.9968 in 2021, respectively. The RMSE reached 0.2141 in 2020 and 0.1609 in 2021. The R2 of tree height extracted from the canopy height model (CHM) via the LM method was 0.9462. The RMSE was 0.3354 in 2021. The results demonstrated that the survival rates of the young forest in the second year and the third year were 99.9% and 85.6%, respectively. This study shows that UAV RGB images can obtain the height of low sapling trees through a computer algorithm based on using 3D point cloud data derived from high-precision UAV images and can monitor the growth of individual trees combined with multi-stage UAV RGB images after afforestation. This research provides a fully automated method for evaluating the afforestation results provided by UAV RGB images. In the future, the universality of the method should be evaluated in more afforestation plots featuring different tree species and terrain. Numéro de notice : A2023-115 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f14010141 Date de publication en ligne : 10/01/2023 En ligne : https://doi.org/10.3390/f14010141 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102482
in Forests > vol 14 n° 1 (January 2023) . - n° 141[article]Above ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy / Mauro Maesano in iForest, biogeosciences and forestry, vol 15 n° 6 (December 2022)
![]()
[article]
Titre : Above ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy Type de document : Article/Communication Auteurs : Mauro Maesano, Auteur ; Giovanni Santopuoli, Auteur ; Federico Valerio Moresi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 451-457 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] biomasse aérienne
[Termes IGN] Calabre
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] gestion forestière durable
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] régression
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Knowledge of forest biomass is an essential parameter for managing the forest in a sustainable way, as forest biomass data availability and reliability are necessary for forestry and forest planning, but also for the carbon market as well as to support the local economy in the mountain and inner areas. However, the accurate quantification of the above-ground biomass (AGB) is still a challenge both at the local and global levels. The use of remote sensing techniques with Unmanned Aerial Vehicle (UAV) platforms can be an excellent trade-off between resolution, scale, and frequency data of AGB estimation. In this study, we evaluated the combined use of RGB images from UAV, LiDAR data and ground truth data to estimate AGB in a forested watershed in Southern Italy. A low-cost AGB estimation method was adopted using a commercial fixed-wing drone equipped with an RGB camera, combined with the canopy information derived by LiDAR and validated by field data. Two modelling methods (stepwise regression, SR and random forest, RF) were used to estimate forest AGB. The output was an accurate maps of AGB for each model. The RF model showed better accuracy than the Steplm model, and the R2 increased from 0.81 to 0.86, and the RMSE and MAE values were decreased from 45.5 to 31.7 Mg ha-1 and from 34.2 to 22.1 Mg ha-1 respectively. We demonstrated that by increasing the computing efficiency through a machine learning algorithm, readily available images can be used to obtain satisfactory results, as proven by the accuracy of the Random forest above biomass estimation model. Numéro de notice : A2022-903 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3832/ifor3781-015 Date de publication en ligne : 03/11/2022 En ligne : https://doi.org/10.3832/ifor3781-015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102299
in iForest, biogeosciences and forestry > vol 15 n° 6 (December 2022) . - pp 451-457[article]Assessment of camera focal length influence on canopy reconstruction quality / Martin Denter in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)
![]()
[article]
Titre : Assessment of camera focal length influence on canopy reconstruction quality Type de document : Article/Communication Auteurs : Martin Denter, Auteur ; Julian Frey, Auteur ; Teja Kattenborn, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100025 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] Abies alba
[Termes IGN] Acer pseudoplatanus
[Termes IGN] Allemagne
[Termes IGN] canopée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Fagus sylvatica
[Termes IGN] image captée par drone
[Termes IGN] Larix decidua
[Termes IGN] longueur focale
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] parcelle forestière
[Termes IGN] Picea abies
[Termes IGN] reconstruction d'image
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Unoccupied aerial vehicles (UAV) with RGB-cameras are affordable and versatile devices for the generation of a series of remote sensing products that can be used for forest inventory tasks, such as creating high-resolution orthomosaics and canopy height models. The latter may serve purposes including tree species identification, forest damage assessments, canopy height or timber stock assessments. Besides flight and image acquisition parameters such as image overlap, flight height, and weather conditions, the focal length, which determines the opening angle of the camera lens, is a parameter that influences the reconstruction quality. Despite its importance, the effect of focal length on the quality of 3D reconstructions of forests has received little attention in the literature. Shorter focal lengths result in more accurate distance estimates in the nadir direction since small angular errors lead to large positional errors in narrow opening angles. In this study, 3D reconstructions of four UAV-acquisitions with different focal lengths (21, 35, 50, and 85 mm) on a 1 ha mature mixed forest plot were compared to reference point clouds derived from high quality Terrestrial Laser Scans. Shorter focal lengths (21 and 35 mm) led to a higher agreement with the TLS scans and thus better reconstruction quality, while at 50 mm, quality losses were observed, and at 85 mm, the quality was considerably worse. F1-scores calculated from a voxel representation of the point clouds amounted to 0.254 with 35 mm and 0.201 with 85 mm. The precision with 21 mm focal length was 0.466 and 0.302 with 85 mm. We thus recommend a focal length no longer than 35 mm during UAV Structure from Motion (SfM) data acquisition for forest management practices. Numéro de notice : A2022-870 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100025 Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100025 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102164
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 6 (December 2022) . - n° 100025[article]A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds / Xiaoqiang Liu in Remote sensing of environment, vol 282 (December 2022)
![]()
[article]
Titre : A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds Type de document : Article/Communication Auteurs : Xiaoqiang Liu, Auteur ; Qin Ma, Auteur ; Xiaoyong wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113280 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] Chine
[Termes IGN] couvert forestier
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] écosystème forestier
[Termes IGN] entropie
[Termes IGN] estimation par noyau
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] semis de pointsRésumé : (auteur) Forest canopy structural complexity (CSC) describes the three-dimensional (3D) arrangement of canopy elements, and has become an emergent forest attribute mediating forest ecosystem functioning along with species diversity. Light detection and ranging (lidar), especially the emerging near-surface lidar platforms (e.g., terrestrial laser scanning/TLS, backpack laser scanning/BLS, unmanned aerial vehicle laser scanning/ULS), can depict 3D canopy information with high efficiency and accuracy, providing an ideal data source for forest CSC quantification. However, current existing lidar-based CSC quantification indices may share common limitations of getting saturated in structurally complex forest stands and not fully capturing within-canopy structural variations. In this study, we introduced the concept of entropy into forest CSC quantification, and proposed a new forest CSC index, namely canopy entropy (CE). Two major bottlenecks were addressed in the CE calculation procedure, including (1) using a Mann-Kendall (MK) test-based resampling strategy to address the issue of incongruent sampling chances of canopy elements at different locations from different lidar systems, and (2) using a kernel density estimation (KDE)-based method to reduce its dependence on point density. The effectiveness and generality of CE were evaluated by simulating TLS and ULS point clouds from nine forest stands and collecting TLS, BLS, and ULS point clouds from 110 field plots distributed in five forest sites, covering a large variety of forest types and forest CSC conditions. The results showed that CE was an effective forest CSC quantification index that successfully captured CSC variations caused by both tree density and the number of vertical canopy layers. It had significant positive correlations with four widely used CSC indices (i.e., canopy cover, foliage height diversity, canopy top rugosity, and fractal dimension; R2: 0.32 to 0.67), but outperformed them by overcoming their common limitations. CE estimates from multiplatform lidar point clouds agreed well with each other (R2 ≥ 0.70, RMSE ≤0.10), indicating it has generality in cross-platform forest CSC quantification practices. We believe the proposed CE index has great potential to help us unravel the correlations among forest CSC, species diversity, and forest ecosystem functions, and therefore improve our understanding on forest ecosystem processes. Numéro de notice : A2022-795 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113280 Date de publication en ligne : 26/09/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113280 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101930
in Remote sensing of environment > vol 282 (December 2022) . - n° 113280[article]GCPs-free photogrammetry for estimating tree height and crown diameter in Arizona cypress plantation using UAV-mounted GNSS RTK / Morteza Pourreza in Forests, vol 13 n° 11 (November 2022)
![]()
[article]
Titre : GCPs-free photogrammetry for estimating tree height and crown diameter in Arizona cypress plantation using UAV-mounted GNSS RTK Type de document : Article/Communication Auteurs : Morteza Pourreza, Auteur ; Fardin Moradi, Auteur ; Mohammad Khosravi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1905 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] cupressus (genre)
[Termes IGN] diamètre des arbres
[Termes IGN] hauteur de vol
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] Iran
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] point d'appui
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] structure-from-motionRésumé : (auteur) One of the main challenges of using unmanned aerial vehicles (UAVs) in forest data acquisition is the implementation of Ground Control Points (GCPs) as a mandatory step, which is sometimes impossible for inaccessible areas or within canopy closures. This study aimed to test the accuracy of a UAV-mounted GNSS RTK (real-time kinematic) system for calculating tree height and crown height without any GCPs. The study was conducted on a Cupressus arizonica (Greene., Arizona cypress) plantation on the Razi University Campus in Kermanshah, Iran. Arizona cypress is commonly planted as an ornamental tree. As it can tolerate harsh conditions, this species is highly appropriate for afforestation and reforestation projects. A total of 107 trees were subjected to field-measured dendrometric measurements (height and crown diameter). UAV data acquisition was performed at three altitudes of 25, 50, and 100 m using a local network RTK system (NRTK). The crown height model (CHM), derived from a digital surface model (DSM), was used to estimate tree height, and an inverse watershed segmentation (IWS) algorithm was used to estimate crown diameter. The results indicated that the means of tree height obtained from field measurements and UAV estimation were not significantly different, except for the mean values calculated at 100 m flight altitude. Additionally, the means of crown diameter reported from field measurements and UAV estimation at all flight altitudes were not statistically different. Root mean square error (RMSE Numéro de notice : A2022-838 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13111905 Date de publication en ligne : 12/11/2022 En ligne : https://doi.org/10.3390/f13111905 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102039
in Forests > vol 13 n° 11 (November 2022) . - n° 1905[article]Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning / Thiên-Anh Nguyen in Remote sensing of environment, vol 281 (November 2022)
PermalinkMulti-level self-adaptive individual tree detection for coniferous forest using airborne LiDAR / Zhenyang Hui in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
PermalinkRiparian ecosystems mapping at fine scale: a density approach based on multi-temporal UAV photogrammetric point clouds / Elena Belcore in Remote sensing in ecology and conservation, vol 8 n° 5 (October 2022)
PermalinkUsing multi-temporal tree inventory data in eucalypt forestry to benchmark global high-resolution canopy height models. A showcase in Mato Grosso, Brazil / Adrián Pascual in Ecological Informatics, vol 70 (September 2022)
PermalinkModeling merchantable wood volume using airborne LiDAR metrics and historical forest inventory plots at a provincial scale / Antoine Leboeuf in Forests, vol 13 n° 7 (July 2022)
PermalinkSimulation-driven 3D forest growth forecasting based on airborne topographic LiDAR data and shading / Štefan Kohek in International journal of applied Earth observation and geoinformation, vol 111 (July 2022)
PermalinkRecent advances in forest insect pests and diseases monitoring using UAV-based data: A systematic review / André Duarte in Forests, vol 13 n° 6 (June 2022)
PermalinkUnveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)
PermalinkAutomated inventory of broadleaf tree plantations with UAS imagery / Aishwarya Chandrasekaran in Remote sensing, vol 14 n° 8 (April-2 2022)
PermalinkUltrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach / Linyuan Li in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
Permalink