Descripteur



Etendre la recherche sur niveau(x) vers le bas
Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
![]()
[article]
Titre : Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks Type de document : Article/Communication Auteurs : Felix Schiefer, Auteur ; Teja Kattenborn, Auteur ; Annett Frick, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 205-215 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] arbre (flore)
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] Forêt-Noire, massif de la
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] inventaire forestier local
[Termes descripteurs IGN] segmentation sémantique
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost-effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree species do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in temperate forests. We used multicopter UAVs to obtain very high-resolution ( Numéro de notice : A2020-706 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.015 date de publication en ligne : 03/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.015 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96236
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 205-215[article]Under-canopy UAV laser scanning for accurate forest field measurements / Eric Hyyppä in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
![]()
[article]
Titre : Under-canopy UAV laser scanning for accurate forest field measurements Type de document : Article/Communication Auteurs : Eric Hyyppä, Auteur ; Juha Hyyppä, Auteur ; Teemu Hakala, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 41 - 60 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] balayage laser
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] densité du bois
[Termes descripteurs IGN] diamètre à hauteur de poitrine
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] erreur moyenne quadratique
[Termes descripteurs IGN] Finlande
[Termes descripteurs IGN] forêt boréale
[Termes descripteurs IGN] hauteur à la base du houppier
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] inventaire forestier local
[Termes descripteurs IGN] modèle de croissance
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] Simultaneous Localisation And Mapping
[Termes descripteurs IGN] télédétection aérienne
[Termes descripteurs IGN] télémètre laser terrestre
[Termes descripteurs IGN] télémétrie laser aéroporté
[Termes descripteurs IGN] troncRésumé : (auteur) Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concerning under-canopy flying unmanned airborne vehicles (UAV). To demonstrate this emerging technology, we investigated tree detection and stem curve estimation using laser scanning data obtained with an under-canopy flying UAV. To this end, we mounted a Kaarta Stencil-1 laser scanner with an integrated simultaneous localization and mapping (SLAM) system on board an UAV that was manually piloted with the help of video goggles receiving a live video feed from the onboard camera of the UAV. Using the under-canopy flying UAV, we collected SLAM-corrected point cloud data in a boreal forest on two 32 m 32 m test sites that were characterized as sparse ( = 42 trees) and obstructed ( = 43 trees), respectively. Novel data processing algorithms were applied for the point clouds in order to detect the stems of individual trees and to extract their stem curves and diameters at breast height (DBH). The estimated tree attributes were compared against highly accurate field reference data that was acquired semi-manually with a multi-scan terrestrial laser scanner (TLS). The proposed method succeeded in detecting 93% of the stems in the sparse plot and 84% of the stems in the obstructed plot. In the sparse plot, the DBH and stem curve estimates had a root-mean-squared error (RMSE) of 0.60 cm (2.2%) and 1.2 cm (5.0%), respectively, whereas the corresponding values for the obstructed plot were 0.92 cm (3.1%) and 1.4 cm (5.2%). By combining the stem curves extracted from the under-canopy UAV laser scanning data with tree heights derived from above-canopy UAV laser scanning data, we computed stem volumes for the detected trees with a relative RMSE of 10.1% in both plots. Thus, the combination of under-canopy and above-canopy UAV laser scanning allowed us to extract the stem volumes with an accuracy comparable to the past best studies based on TLS in boreal forest conditions. Since the stems of several spruces located on the test sites suffered from severe occlusion and could not be detected with the stem-based method, we developed a separate work flow capable of detecting trees with occluded stems. The proposed work flow enabled us to detect 98% of trees in the sparse plot and 93% of the trees in the obstructed plot with a 100% correction level in both plots. A key benefit provided by the under-canopy UAV laser scanner is the short period of time required for data collection, currently demonstrated to be much faster than the time required for field measurements and TLS. The quality of the measurements acquired with the under-canopy flying UAV combined with the demonstrated efficiency indicates operational potential for supporting fast and accurate forest resource inventories. Numéro de notice : A2020-240 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.021 date de publication en ligne : 11/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94994
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 41 - 60[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 SL Revue Centre de documentation Revues en salle Disponible 081-2020063 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study / Enrico Borgogno Mondino in International Journal of Remote Sensing IJRS, vol 41 n°12 (20 - 30 March 2020)
![]()
[article]
Titre : How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study Type de document : Article/Communication Auteurs : Enrico Borgogno Mondino, Auteur ; Vanina Fissore, Auteur ; Michael J. Falkowski, Auteur ; Brian Palik, Auteur Année de publication : 2020 Article en page(s) : pp 4551 - 4569 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] auscultation topographique
[Termes descripteurs IGN] diamètre des arbres
[Termes descripteurs IGN] données dendrométriques
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] feuillu
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] inventaire forestier local
[Termes descripteurs IGN] Minnesota (Etats-Unis)
[Termes descripteurs IGN] modèle d'erreur
[Termes descripteurs IGN] pinophyta
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] structure d'un peuplement forestier
[Termes descripteurs IGN] surface forestière
[Termes descripteurs IGN] télémètre laser aéroportéRésumé : (auteur) Aerial discrete return LiDAR (Light Detection And Ranging) technology (ALS – Aerial Laser Scanner) is now widely used for forest characterization due to its high accuracy in measuring vertical and horizontal forest structure. Random and systematic errors can still occur and these affect the native point cloud, ultimately degrading ALS data accuracy, especially when adopting datasets that were not natively designed for forest applications. A detailed understanding of how uncertainty of ALS data could affect the accuracy of derivable forest metrics (e.g. tree height, stem diameter, basal area) is required, looking for eventual error biases that can be possibly modelled to improve final accuracy. In this work a low-density ALS dataset, originally acquired by the State of Minnesota (USA) for non-forestry related purposes (i.e. topographic mapping), was processed attempting to characterize forest inventory parameters for the Cutfoot Sioux Experimental Forest (north-central Minnesota, USA). Since accuracy of estimates strictly depends on the applied species-specific dendrometric models a first required step was to map tree species over the forest. A rough classification, aiming at separating conifers from broadleaf, was achieved by processing a Landsat 8 OLI (Operational Land Imager) scene. ALS-derived forest metrics initially greatly overestimated those measured at the ground in 230 plots. Conversely, ALS-derived tree density was greatly underestimated. To reduce ALS uncertainty, trees belonging to the dominated plane were removed from the ground dataset, assuming that they could not properly be detected by low-density ALS measures. Consequently, MAE (Mean Absolute Error) values significantly decreased to 4.0 m for tree height and to 0.19 cm for diameter estimates. Remaining discrepancies were related to a bias affecting the native ALS point cloud, which was modelled and removed. Final MAE values were 1.32 m for tree height, 0.08 m for diameter, 8.5 m2 ha−1 for basal area, and 0.06 m for quadratic mean diameter. Specifically focusing on tree height and diameter estimates, the significance of differences between ground and ALS estimates was tested relative to the expected ‘best accuracy’. Results showed that after correction: 94.35% of tree height differences were lower than the corresponding reference value (2.86 m); 70% of tree diameter differences were lower than the corresponding reference value (4.5 cm for conifers and 6.8 cm for broadleaf). Finally, forest parameters were computed for the whole Cutfoot Sioux Experimental Forest. Main findings include: 1) all forest estimates based on a low-density ALS point cloud can be derived at plot level and not at a tree level; 2) tree height estimates obtained by low-density ALS point clouds at the plot level are highly reasonably accurate only after testing and modelling eventual error bias; 3) diameter, basal area, and quadratic mean diameter estimates have large uncertainties, suggesting the need for a higher point density and, probably, a better mapping of tree species (if possible) than achieved with a remote sensing-based approach. Numéro de notice : A2020-450 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723173 date de publication en ligne : 20/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723173 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95535
in International Journal of Remote Sensing IJRS > vol 41 n°12 (20 - 30 March 2020) . - pp 4551 - 4569[article]
[article]
Titre : Patrimoine arboré : pousser de nouvelles pratiques Type de document : Article/Communication Auteurs : Xavier Fodor, Auteur Année de publication : 2019 Article en page(s) : pp 39 - 39 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] Genève
[Termes descripteurs IGN] gestion forestière
[Termes descripteurs IGN] inventaire forestier local
[Termes descripteurs IGN] patrimoine naturel
[Termes descripteurs IGN] système d'information forestierRésumé : (Auteur) Inventorier à l'échelle d'un canton un patrimoine arboré ensuite géré dans chaque commune nécessite d'adopter un langage commun. Les habitudes de travail doivent aussi évoluer. Numéro de notice : A2019-422 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93705
in SIGmag > n° 22 (octobre 2019) . - pp 39 - 39[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 147-2019032 SL Revue Centre de documentation Revues en salle Disponible 147-2019031 SL Revue Centre de documentation Revues en salle Disponible Estimating forest stand density and structure using Bayesian individual tree detection, stochastic geometry, and distribution matching / Kasper Kansanen in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
![]()
[article]
Titre : Estimating forest stand density and structure using Bayesian individual tree detection, stochastic geometry, and distribution matching Type de document : Article/Communication Auteurs : Kasper Kansanen, Auteur ; Jari Vauhkonen, Auteur ; Timo Lähivaara, Auteur ; Aku Seppänen, Auteur ; Matti Maltamo, Auteur ; Lauri Mehtätalo, Auteur Année de publication : 2019 Article en page(s) : pp 66 - 78 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] appariement d'histogramme
[Termes descripteurs IGN] chaîne de traitement
[Termes descripteurs IGN] détection d'arbres
[Termes descripteurs IGN] diamètre à hauteur de poitrine
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] Finlande
[Termes descripteurs IGN] forêt boréale
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] inventaire forestier local
[Termes descripteurs IGN] Picea abies
[Termes descripteurs IGN] Pinus sylvestris
[Termes descripteurs IGN] placette d'échantillonnage
[Termes descripteurs IGN] surface terrière
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Errors in individual tree detection and delineation affect diameter distribution predictions based on crown attributes extracted from the detected trees. We develop a methodology for circumventing these problems. The method is based on matching cumulative distribution functions of field measured tree diameter distributions and crown radii distributions extracted from airborne laser scanning data through individual tree detection presented by Vauhkonen and Mehtätalo (2015). In this study, empirical distribution functions and a monotonic, nonlinear model curve are introduced. Tree crown radius distribution produced by individual tree detection is corrected by a method taking into account that all trees cannot be detected. The evaluation is based on the ability of the developed model sequence to predict quadratic mean diameter and total basal area. The studied data consists of 36 field plots in a typical boreal managed forest area in eastern Finland. The suggested enhancements to the model sequence produce improved results in most of the test cases. Most notably, in leave-one-out cross-validation experiments the modified models improve RMSE of basal area 13% in the full data and RMSE of quadratic mean diameter and basal area 69% and 11%, respectively, in pure pine plots. Better modeling of the crown radius distribution and improved matching between crown radii and stem diameters add the operational premises of the full distribution matching. Numéro de notice : A2019-455 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.007 date de publication en ligne : 15/04/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92868
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 66 - 78[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019063 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Estimation of aboveground biomass and carbon in a tropical rain forest in Gabon using remote sensing and GPS data / Kalifa Goïta in Geocarto international, vol 34 n° 3 ([01/03/2019])
PermalinkIntegrating urban and national forest inventory data in support of rural–urban assessments / James A. Westfall in Forestry, an international journal of forest research, vol 91 n° 5 (December 2018)
PermalinkAdaptive stopping criterion for top-down segmentation of ALS point clouds in temperate coniferous forests / Nina Amiri in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)
PermalinkSemi-supervised SVM for individual tree crown species classification / Michele Dalponte in ISPRS Journal of photogrammetry and remote sensing, vol 110 (December 2015)
PermalinkDetection of fallen trees in ALS point clouds using a Normalized Cut approach trained by simulation / Przemyslaw Polewski in ISPRS Journal of photogrammetry and remote sensing, vol 105 (July 2015)
PermalinkFlore méditerranéenne et changement climatique : la course-poursuite est engagée / Michel Vennetier ; Christian Ripert in Forêt méditerranéenne, vol 31 n° 1 (mars 2010)
PermalinkProceedings of the 8th Annual Forest Inventory and Analysis Symposium, 2006 October 16–19, Monterey, CA. Washington (DC) / Ronald E. McRoberts (2009)
PermalinkTélédétection spatiale et inventaires forestiers / Michelle Pain-Orcet in Bulletin [Société Française de Photogrammétrie et Télédétection], n° 114 (Avril 1989)
Permalink