Descripteur
Termes IGN > informatique > langage naturel (informatique)
langage naturel (informatique)Voir aussi |
Documents disponibles dans cette catégorie (75)



Etendre la recherche sur niveau(x) vers le bas
Spatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Spatially oriented convolutional neural network for spatial relation extraction from natural language texts Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Kai Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 839 - 866 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] exploration de données
[Termes IGN] langage naturel (informatique)
[Termes IGN] proximité sémantique
[Termes IGN] relation spatiale
[Termes IGN] relation topologique
[Termes IGN] site wiki
[Termes IGN] spatial metrics
[Termes IGN] système à base de connaissancesRésumé : (auteur) Spatial relation extraction (e.g., topological relations, directional relations, and distance relations) from natural language descriptions is a fundamental but challenging task in several practical applications. Current state-of-the-art methods rely on rule-based metrics, either those specifically developed for extracting spatial relations or those integrated in methods that combine multiple metrics. However, these methods all rely on developed rules and do not effectively capture the characteristics of natural language spatial relations because the descriptions may be heterogeneous and vague and may be context sparse. In this article, we present a spatially oriented piecewise convolutional neural network (SP-CNN) that is specifically designed with these linguistic issues in mind. Our method extends a general piecewise convolutional neural network with a set of improvements designed to tackle the task of spatial relation extraction. We also propose an automated workflow for generating training datasets by integrating new sentences with those in a knowledge base, based on string similarity and semantic similarity, and then transforming the sentences into training data. We exploit a spatially oriented channel that uses prior human knowledge to automatically match words and understand the linguistic clues to spatial relations, finally leading to an extraction decision. We present both the qualitative and quantitative performance of the proposed methodology using a large dataset collected from Wikipedia. The experimental results demonstrate that the SP-CNN, with its supervised machine learning, can significantly outperform current state-of-the-art methods on constructed datasets. Numéro de notice : A2022-365 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12887 Date de publication en ligne : 27/12/2021 En ligne : https://doi.org/10.1111/tgis.12887 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100584
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 839 - 866[article]Architecture for semantic web service composition in spatial data infrastructures / Deniztan Ulutaş Karakol in Survey review, vol 54 n° 382 (January 2022)
![]()
[article]
Titre : Architecture for semantic web service composition in spatial data infrastructures Type de document : Article/Communication Auteurs : Deniztan Ulutaş Karakol, Auteur ; Cetin Cömert, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] accès aux données localisées
[Termes IGN] conception orientée utilisateur
[Termes IGN] langage naturel (informatique)
[Termes IGN] ontologie
[Termes IGN] OWL
[Termes IGN] web sémantiqueRésumé : (auteur) The importance of geospatial data has rendered it to be used in decision-making in both public and private sectors. The purpose of this study was to employ Semantic Web Technology (SWT) for the problems of Web Service Composition (WSC) in the context of Spatial Data Infrastructures (SDI). Some of these problems are identifying the workflow sequence and the user goal, discovering services according to service parameters, and matching these parameters. As a suggestion for the solution of all these problems a semi-automated WSC architecture was proposed in this study. In terms of architecture, users state their ‘goal’ with a natural language sentence. By semantically matching this sentence with a Spatial Services Ontology (SSO), the corresponding ‘abstract’ WSC was ‘located’ and the ‘concrete’ WSC was formed. Although there are still problems waiting to be solved due to the scope of the work, this study makes a valuable contribution to the area. Numéro de notice : A2022-110 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2020.1858255 Date de publication en ligne : 25/12/2020 En ligne : https://doi.org/10.1080/00396265.2020.1858255 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99627
in Survey review > vol 54 n° 382 (January 2022) . - pp 1 - 16[article]
Titre : Social Media and Machine Learning Type de document : Monographie Auteurs : Alberto Cano, Éditeur scientifique Editeur : London [UK] : IntechOpen Année de publication : 2020 Importance : 96 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-1-83880-616-3 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage automatique
[Termes IGN] données massives
[Termes IGN] exploration de texte
[Termes IGN] langage naturel (informatique)
[Termes IGN] réseau social
[Termes IGN] sentimentRésumé : (éditeur) Social media has transformed society and the way people interact with each other. The volume and speed in which new content is being generated surpasses the processing capacity of machine learning systems. Analyzing such data demands new approaches coming from natural language processing, text mining, sentiment analysis, etc to understand and resolve the arising challenges. There is a need to develop robust and adaptable systems to tackle these open issues in real time, as well as to provide a meaningful summarization and visualization to the end users. This book provides the reader with a comprehensive overview of the latest developments in social media and machine learning, addressing research innovations, applications, trends, and open challenges in this crucial area. Note de contenu : 1- Introductory chapter: Data streams and online learning in social media
2- Automatic speech emotion recognition using machine learning
3- A case study of using big data processing in education: Method of matching members by optimizing collaborative
learning environment
4- Literature review on big data analytics methods
5- Information and communication based collaborative learning and behavior modeling using machine learning algorithmNuméro de notice : 28481 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/SOCIETE NUMERIQUE Nature : Recueil / ouvrage collectif DOI : 10.5772/intechopen.78089 En ligne : https://doi.org/10.5772/intechopen.78089 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99165 Designing geovisual analytics environments and displays with humans in mind / Arzu Çöltekin in ISPRS International journal of geo-information, vol 8 n° 12 (December 2019)
![]()
[article]
Titre : Designing geovisual analytics environments and displays with humans in mind Type de document : Article/Communication Auteurs : Arzu Çöltekin, Auteur ; Sidonie Christophe , Auteur ; Anthony Robinson, Auteur ; Urška Demšar, Auteur
Année de publication : 2019 Projets : 1-Pas de projet / Article en page(s) : n° 572 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse visuelle
[Termes IGN] interface homme-machine
[Termes IGN] langage naturel (informatique)
[Termes IGN] réalité virtuelle
[Termes IGN] représentation cartographique 3D
[Vedettes matières IGN] GéovisualisationRésumé : (Auteur) [Introduction] In this open-access Special Issue, we feature a set of publications under the theme “Human-Centered Geovisual Analytics and Visuospatial Display Design”. As the title suggests, the scope of this collection is on human-centered questions regarding visual analytics software environments; and the design of visuospatial displays within and beyond these environments. The essential building blocks of visual analytics (VA) are computers and humans [1]. Without computers (i.e., technology and quantitative methods such as those used in statistics and data science) VA simply would not exist. For decades now, it has been clear that computers are better than humans in processing large amounts of data, being capable of storing and quickly retrieving what is needed. Mechanisms such as parsing and filtering, automated pattern detection and machine learning, manual queries, and coordinated-view visualizations make visual analytics environments amazingly versatile and powerful [2]. The tools contained in VA environments assist us in spatial learning, discovery, and decision making [3,4]. It is important to remember that they can really only play an assistive role however, because tasks such as learning, interpreting patterns to make discoveries, and decision making are inherently qualitative. Often the goal is to make decisions based on observed patterns and anomalies. Such patterns and anomalies are much more likely to emerge (and if they are known to exist, they are better expressed) with visualizations than via numbers or tables alone [5]. Numéro de notice : A2019-614 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi8120572 Date de publication en ligne : 11/12/2019 En ligne : https://doi.org/10.3390/ijgi8120572 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95213
in ISPRS International journal of geo-information > vol 8 n° 12 (December 2019) . - n° 572[article]Mapping urban fingerprints of odonyms automatically extracted from French novels / Ludovic Moncla in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
![]()
[article]
Titre : Mapping urban fingerprints of odonyms automatically extracted from French novels Type de document : Article/Communication Auteurs : Ludovic Moncla , Auteur ; Mauro Gaio, Auteur ; Thierry Joliveau, Auteur ; Yves-François Le Lay, Auteur ; Pierre-Olivier Mazagol, Auteur
Année de publication : 2019 Article en page(s) : pp 2477 - 2497 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Toponymie
[Termes IGN] dix-neuvième siècle
[Termes IGN] empreinte
[Termes IGN] extraction automatique
[Termes IGN] Geoparsing
[Termes IGN] langage naturel (informatique)
[Termes IGN] littérature
[Termes IGN] odonymie
[Termes IGN] Paris (75)
[Termes IGN] reconnaissance de noms
[Termes IGN] route
[Termes IGN] traitement du langage naturelRésumé : (auteur) In this paper, we propose and discuss a methodology to map the spatial fingerprints of novels and authors based on all of the named urban roads (i.e., odonyms) extracted from novels. We present several ways to explore Parisian space and fictional landscapes by interactively and simultaneously browsing geographical space and literary text. Our project involves building a platform capable of retrieving, mapping and analyzing the occurrences of named urban roads in novels in which the action occurs wholly or partly in Paris. This platform will be used in several areas, such as cultural tourism, urban research, and literary analysis. The paper focuses on extracting named urban roads and mapping the results for a sample of 31 novels published between 1800 and 1914. Two approaches to the annotation of odonyms are compared. First, we describe a proof of concept using queries made via the TXM textual analysis platform. Then, we describe an automatic process using a natural language processing (NLP) method. Additionally, we mention how the geosemantic information annotated from the text (e.g., a structure combining verbs, spatial relations, named entities, adjectives and adverbs) can be used to automatically characterize the semantic content associated with named urban roads. Numéro de notice : A2019-427 Affiliation des auteurs : non IGN Thématique : TOPONYMIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1584804 Date de publication en ligne : 17/03/2019 En ligne : https://doi.org/10.1080/13658816.2019.1584804 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93560
in International journal of geographical information science IJGIS > vol 33 n° 12 (December 2019) . - pp 2477 - 2497[article]DataPink, l'IA au service de l'information géographique / Anonyme in Géomatique expert, n° 126 (janvier - février 2019)
PermalinkA spatial analysis of non‐English Twitter activity in Houston, TX / Matthew Haffner in Transactions in GIS, vol 22 n° 4 (August 2018)
PermalinkAggregate keyword nearest neighbor queries on road networks / Pengfei Zhang in Geoinformatica [en ligne], vol 22 n° 2 (April 2018)
PermalinkInterpreting the fuzzy semantics of natural-language spatial relation terms with the fuzzy random forest algorithm / Xiaonan Wang in ISPRS International journal of geo-information, vol 7 n° 2 (February 2018)
PermalinkPopularity-aware collective keyword queries in road networks / Sen Zhao in Geoinformatica [en ligne], vol 21 n° 3 (July - September 2017)
PermalinkClassifying natural-language spatial relation terms with random forest algorithm / Shihong Du in International journal of geographical information science IJGIS, vol 31 n° 3-4 (March-April 2017)
PermalinkReconstruction of itineraries from annotated text with an informed spanning tree algorithm / Ludovic Moncla in International journal of geographical information science IJGIS, vol 30 n° 5-6 (May - June 2016)
PermalinkReconstruction automatique d'itinéraires à partir de textes descriptifs / Ludovic Moncla in Cartes & Géomatique, n° 227 (mars - mai 2016)
![]()
PermalinkEuropean handbook of crowdsourced geographic information, ch. 14. Querying VGI by semantic enrichment / Robert Lemmens (2016)
![]()
PermalinkMetadata topic harmonization and semantic search for linked-data-driven geoportals: A case study using ArcGIS online / Yingjie Hu in Transactions in GIS, vol 19 n° 3 (June 2015)
Permalink