Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > formation végétale > forêt > forêt inéquienne
forêt inéquienneVoir aussi |
Documents disponibles dans cette catégorie (14)



Etendre la recherche sur niveau(x) vers le bas
Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe - a dynamic, sensitive equilibrium / Sonja Vospernik in Forest ecology and management, vol 530 (February-15 2023)
![]()
[article]
Titre : Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe - a dynamic, sensitive equilibrium Type de document : Article/Communication Auteurs : Sonja Vospernik, Auteur ; Michael Heym, Auteur ; Hans Pretzsch, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 120753 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] climat
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] Europe (géographie politique)
[Termes IGN] évapotranspiration
[Termes IGN] forêt inéquienne
[Termes IGN] modèle dynamique
[Termes IGN] peuplement mélangé
[Termes IGN] Pinus sylvestris
[Termes IGN] Quercus pedunculata
[Termes IGN] Quercus sessiliflora
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Quercus robur/Quercus petraea and Pinus sylvestris are widely distributed and economically important tree species in Europe co-occurring on mesotrophic, xeric and mesic sites. Increasing dry conditions may reduce their growth, but growth reductions may be modified by mixture, competition and site conditions. The annual diameter growth in monospecific and mixed stands along an ecological gradient with mean annual temperatures ranging from 5.5 °C to 11.5 °C was investigated in this study. On 36 triplets (108 plots), trees were cored and the year-ring series were cross-dated, resulting in year-ring series of 785 and 804 trees for Q. spp. and P. sylvestris, respectively. A generalized additive model with a logarithmic link was fit to the data with random effects for the intercept at the triplet, year and tree level and a random slope for the covariate age for each tree; the Tweedie-distribution was used. The final model explained 87 % of the total variation in diameter increment for both tree species. Significant covariates were age, climate variables (long-term mean, monthly), local competition variables, relative dbh, mixture, stand structure and interactions thereof. Tree growth declined with age and local density and increased with social position. It was positively influenced by mixture and structural diversity (Gini coefficient); mixture effects were significant for P. sylvestris only. The influence of potential evapotranspiration (PET) in spring and autumn on tree growth was positive and non-linear, whereas tree growth sharply decreased with increasing PET in June, which proved to be the most influential month on tree growth along the whole ecological gradient. Interactions of PET with tree social position (relative dbh) were significant in July and September for Q. spp. and in April for P. sylvestris. Interactions of climate with density or mixture were not significant. Climatic effects found agree well with previous results from intra-annual growth studies and indicate that the model captures the causal factors for tree growth well. Furthermore, the interaction between climate and relative dbh might indicate a longer growth duration for trees of higher social classes. Analysis of random effects across time and space showed highly dynamic patterns, with competitive advantages changing annually between species and spatial patterns showing no large-scale trends but pointing to the prevalence of local site factors. In mixed-species stands, the tree species have the same competitivity in the long-term, which is modified by climate each year. Climate warming will shift the competitive advantages, but the direction will be highly site-specific. Numéro de notice : A2023-108 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120753 Date de publication en ligne : 29/12/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120753 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102443
in Forest ecology and management > vol 530 (February-15 2023) . - n° 120753[article]Testing the application of process-based forest growth model PREBAS to uneven-aged forests in Finland / Man Hu in Forest ecology and management, vol 529 (February-1 2023)
![]()
[article]
Titre : Testing the application of process-based forest growth model PREBAS to uneven-aged forests in Finland Type de document : Article/Communication Auteurs : Man Hu, Auteur ; Francesco Minunno, Auteur ; Mikko Peltoniemi, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 120702 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] biomasse forestière
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] forêt inéquienne
[Termes IGN] hauteur des arbres
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] modélisation de la forêt
[Termes IGN] mortalité
[Termes IGN] peuplement mélangé
[Termes IGN] photosynthèse
[Termes IGN] Picea abies
[Termes IGN] structure d'un peuplement forestier
[Vedettes matières IGN] ForesterieRésumé : (auteur) The challenges of applying process-based models to uneven-aged forests are the difficulties in simulating the interactions between trees and resource allocation between size classes. In this study, we focused on a process-based forest growth model PREBAS which is a mean tree model with Reineke self-thinning mortality and was originally developed for even-aged forests. The primary aim was to test the application of PREBAS model to uneven-aged forests by introducing different diameter at breast height (DBH) size classes to better represent the forest structure. Additionally, we introduced a new mortality model to PREBAS which is developed for uneven-aged stands and compared with the current PREBAS version in which a modification Reineke rule is used. The tests were conducted in 26 old Norway spruce dominated stands in southern and central Finland with three consecutive measurements (on average a 25-year study period). To evaluate the model performance, we compared the estimations of stand averaged diameter at breast height (D), stand averaged tree height (H), stand averaged crown base height (), stand basal area (B) and density (N) with measurements. Moreover, biomass estimations of each tree component (foliage, branch and stem) were compared to estimations from empirical models. Results showed that introducing size distributions can represent better stand structure and improve the model predictions compared with data. Moreover, the new mortality model showed promise with qualitatively more realistic results especially among the largest tree size classes. However, model bias still existed in the simulation although the predictions were improved. It revealed that further calibration of the PREBAS model with size classes should be done to better extend the model applicability to uneven-aged forests. Numéro de notice : A2023-022 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120702 Date de publication en ligne : 05/12/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120702 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102228
in Forest ecology and management > vol 529 (February-1 2023) . - n° 120702[article]Age-independent diameter increment models for mixed mountain forests / Albert Ciceu in European Journal of Forest Research, vol 141 n° 5 (October 2022)
![]()
[article]
Titre : Age-independent diameter increment models for mixed mountain forests Type de document : Article/Communication Auteurs : Albert Ciceu, Auteur ; Karol Bronisz, Auteur ; Juan Garcia-Duro, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 781 - 800 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] échantillonnage
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt alpestre
[Termes IGN] forêt inéquienne
[Termes IGN] modèle de croissance végétale
[Termes IGN] modélisation de la forêt
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Roumanie
[Vedettes matières IGN] ForesterieRésumé : (auteur) Mixed mountain forests with an uneven-aged structure are characterized by a high tree-growth variability making traditional age-dependent growth models inapplicable. Estimating site productivity is yet another impediment for modelling tree growth in such forests. Uneven-aged mixed-stand forests are known for their high resilience, resistance and productivity, and are being promoted as a suitable alternative to even-aged, pure plantations for climate change adaptation and mitigation. However, their growth must be accurately measured and predicted, but diameter at the breast height (dbh) increment models specifically designed for uneven-aged mixed mountain forests are still rare. Using permanent sampling network data and 465 increment cores, we built two age-independent dbh increment (id) models for the main species of the study area, namely Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.). Mixed effects models and the algebraic difference approach were employed to develop id models based on empirical and commonly used theoretical growth functions. A past growth index was further developed and introduced in the model in order to explain the id variability. Several mixed effects calibration strategies were assessed in order to obtain the most accurate localized curve for new plots. Tree size, competition and biogeoclimatic variables were found to explain the id through the empirical growth function, while the growth index significantly improved the theoretical growth function for Norway spruce. The optimization of the calibration strategy for the mixed effects modelling framework enables the growth index implementation in forest practice as an accurate method for estimating site productivity. The accuracy of the two id models was similar: the root mean squared error of the empirical growth function varied between 0.940 and 1.042 cm for spruce, beech and fir, while the root mean squared error obtained through the theoretical growth function for spruce only was 1.105 cm. The basal area increment prediction at the plot level based on the theoretical growth function reached a root mean squared error of 0.043 m2 while using the empirical growth function the root mean squared error is 0.047 m2. The high accuracy obtained using age-independent models underlines their suitability for predicting growth in mixed uneven-aged forests. The developed models can be easily integrated into forest practice to accurately obtain id estimates. Numéro de notice : A2022-758 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-022-01473-5 Date de publication en ligne : 13/08/2022 En ligne : https://doi.org/10.1007/s10342-022-01473-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101767
in European Journal of Forest Research > vol 141 n° 5 (October 2022) . - pp 781 - 800[article]Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure / Alejandro Rodríguez-Vivancos in European Journal of Forest Research, vol 141 n° 3 (June 2022)
![]()
[article]
Titre : Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure Type de document : Article/Communication Auteurs : Alejandro Rodríguez-Vivancos, Auteur ; José Antonio Manzanera, Auteur ; Susana Martín-Fernández, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 447 - 465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de variance
[Termes IGN] Bootstrap (statistique)
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur d'échantillon
[Termes IGN] Espagne
[Termes IGN] forêt inéquienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pinus sylvestris
[Termes IGN] régression linéaire
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] structure-from-motionRésumé : (auteur) Airborne Laser Scanning (ALS) is widely extended in forest evaluation, although photogrammetry-based Structure from Motion (SfM) has recently emerged as a more affordable alternative. Return cloud metrics and their normalization using different typologies of Digital Terrain Models (DTM), either derived from SfM or from private or free access ALS, were evaluated. In addition, the influence of the return density (0.5–6.5 returns m-2) and the sampling intensity (0.3–3.4%) on the estimation of the most common stand structure variables were also analysed. The objective of this research is to gather all these questions in the same document, so that they serve as support for the planning of forest management. This study analyses the variables collected from 60 regularly distributed circular plots (r = 18 m) in a 150-ha of uneven-aged Scots pine stand. Results indicated that both ALS and SfM can be equally used to reduce the sampling error in the field inventories, but they showed differences when estimating the stand structure variables. ALS produced significantly better estimations than the SfM metrics for all the variables of interest, as well as the ALS-based normalization. However, the SfM point cloud produced better estimations when it was normalized with its own DTM, except for the dominant height. The return density did not have significant influence on the estimation of the stand structure variables in the range studied, while higher sampling intensities decreased the estimation errors. Nevertheless, these were stabilized at certain intensities depending on the variance of the stand structure variable. Numéro de notice : A2022-417 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s10342-022-01447-7 Date de publication en ligne : 12/04/2022 En ligne : https://doi.org/10.1007/s10342-022-01447-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100780
in European Journal of Forest Research > vol 141 n° 3 (June 2022) . - pp 447 - 465[article]Funding for planting missing species financially supports the conversion from pure even-aged to uneven-aged mixed forests and climate change mitigation / Joerg Roessinger in European Journal of Forest Research, vol 141 n° 3 (June 2022)
![]()
[article]
Titre : Funding for planting missing species financially supports the conversion from pure even-aged to uneven-aged mixed forests and climate change mitigation Type de document : Article/Communication Auteurs : Joerg Roessinger, Auteur ; Ladislav Kulla, Auteur ; Vlastimil Murgaš, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 517 - 534 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] Carpates
[Termes IGN] conversion forestière
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt équienne
[Termes IGN] forêt inéquienne
[Termes IGN] modélisation de la forêt
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] plantation forestière
[Termes IGN] politique de conservation (biodiversité)
[Termes IGN] régénération (sylviculture)
[Termes IGN] service écosystémique
[Termes IGN] volume en bois
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Mountain spruce forests in Central Europe decline under storms and bark beetle calamities driven by climate change. A stabilisation by planting rare or missing tree species is expensive and requires funding. A funding policy should mitigate climate change and support biodiversity. The goal of this study was to identify a conversion strategy of even-aged spruce-dominated forest stands to uneven-aged mixed stands with spruce (Picea abies (L.) H.Karst.), beech (Fagus sylvatica L.), and fir (Abies alba Mill.). A simultaneous nonlinear optimisation of the number of planted trees and harvested trees per species and per period schedules stand treatments aiming to maximise the long-term financial outcome. Planting modelling extends a density-dependent stand-level matrix transition model based on diameter classes with an age-class-based model for artificial regeneration. An optimal conversion strategy was applied for five funding policy schemes, each for five initial states representing different stages of age and species composition typical for spruce forest conversion in the mountain zone of the Western Carpathians. Only 50% and higher funding of planting costs for the minor/missing fir and beech species facilitates a substantial increase of their shares in stand volume. Funding decreases the volume failure due to mortality. Funding increases the standing and harvested volume, which mitigates climate change by increasing the carbon sequestration. Funding causes unintended effects on ecosystem services by lowering harvest diameters, decreasing the volume of less profitable beech, and temporarily reducing the stand density aimed at supporting plantings and their diameter increments. Numéro de notice : A2022-418 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-022-01456-6 Date de publication en ligne : 07/05/2022 En ligne : https://doi.org/10.1007/s10342-022-01456-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100781
in European Journal of Forest Research > vol 141 n° 3 (June 2022) . - pp 517 - 534[article]Estimation of uneven-aged forest stand parameters, crown closure and land use/cover using the Landsat 8 OLI satellite image / Sinan Kaptan in Geocarto international, vol 37 n° 5 ([01/03/2022])
PermalinkRegeneration of spruce - fir - beech mixed forests under climate and ungulate pressure / Mithila Unkule (2022)
PermalinkEstimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data / Nikos Georgopoulos in Remote sensing, vol 13 n° 23 (December-1 2021)
PermalinkRelative influence of stand and site factors on aboveground live-tree carbon sequestration and mortality in managed and unmanaged forests / Christel C. Kern in Forest ecology and management, vol 493 (August-1 2021)
PermalinkAnalysis of plot-level volume increment models developed from machine learning methods applied to an uneven-aged mixed forest / Seyedeh Kosar Hamidi in Annals of Forest Science, vol 78 n° 1 (March 2021)
PermalinkTree mortality in the dynamics and management of uneven-aged Norway spruce stands in southern Finland / Sauli Valkonen in European Journal of Forest Research, vol 139 n° 6 (December 2020)
PermalinkEconomics of harvesting uneven-aged forest stands in Fennoscandia / Janne Rämo in Scandinavian journal of forest research, vol 29 n° 8 (October 2014)
PermalinkBasic features of a group selection system modification aimed to sustain regular-uneven-aged stand structure / Roman Efremov in Annals of forest research, vol 52 n° 1 (January 2009)
![]()
PermalinkModélisation de la dynamique forestière : recherche de configurations spatiales / J.P. Pascal (1997)
Permalink