Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > photogrammétrie > photogrammétrie numérique > structure-from-motion
structure-from-motionVoir aussi |
Documents disponibles dans cette catégorie (97)



Etendre la recherche sur niveau(x) vers le bas
Investigating the role of image retrieval for visual localization / Martin Humenberger in International journal of computer vision, vol 130 n° 7 (July 2022)
![]()
[article]
Titre : Investigating the role of image retrieval for visual localization Type de document : Article/Communication Auteurs : Martin Humenberger, Auteur ; Yohann Cabon, Auteur ; Noé Pion, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : 1811 - 1836 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse visuelle
[Termes IGN] base de données d'images
[Termes IGN] estimation de pose
[Termes IGN] flou
[Termes IGN] localisation basée image
[Termes IGN] localisation basée vision
[Termes IGN] point de repère
[Termes IGN] précision de localisation
[Termes IGN] Ransac (algorithme)
[Termes IGN] réalité de terrain
[Termes IGN] structure-from-motion
[Termes IGN] vision par ordinateurRésumé : (auteur) Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of “ground truth” for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still significant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization. Numéro de notice : A2022-538 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01615-7 Date de publication en ligne : 25/05/2022 En ligne : https://doi.org/10.1007/s11263-022-01615-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101070
in International journal of computer vision > vol 130 n° 7 (July 2022) . - 1811 - 1836[article]Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure / Alejandro Rodríguez-Vivancos in European Journal of Forest Research, vol 141 n° 3 (June 2022)
![]()
[article]
Titre : Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure Type de document : Article/Communication Auteurs : Alejandro Rodríguez-Vivancos, Auteur ; José Antonio Manzanera, Auteur ; Susana Martín-Fernández, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 447 - 465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de variance
[Termes IGN] Bootstrap (statistique)
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur d'échantillon
[Termes IGN] Espagne
[Termes IGN] forêt inéquienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pinus sylvestris
[Termes IGN] régression linéaire
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] structure-from-motionRésumé : (auteur) Airborne Laser Scanning (ALS) is widely extended in forest evaluation, although photogrammetry-based Structure from Motion (SfM) has recently emerged as a more affordable alternative. Return cloud metrics and their normalization using different typologies of Digital Terrain Models (DTM), either derived from SfM or from private or free access ALS, were evaluated. In addition, the influence of the return density (0.5–6.5 returns m-2) and the sampling intensity (0.3–3.4%) on the estimation of the most common stand structure variables were also analysed. The objective of this research is to gather all these questions in the same document, so that they serve as support for the planning of forest management. This study analyses the variables collected from 60 regularly distributed circular plots (r = 18 m) in a 150-ha of uneven-aged Scots pine stand. Results indicated that both ALS and SfM can be equally used to reduce the sampling error in the field inventories, but they showed differences when estimating the stand structure variables. ALS produced significantly better estimations than the SfM metrics for all the variables of interest, as well as the ALS-based normalization. However, the SfM point cloud produced better estimations when it was normalized with its own DTM, except for the dominant height. The return density did not have significant influence on the estimation of the stand structure variables in the range studied, while higher sampling intensities decreased the estimation errors. Nevertheless, these were stabilized at certain intensities depending on the variance of the stand structure variable. Numéro de notice : A2022-417 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s10342-022-01447-7 Date de publication en ligne : 12/04/2022 En ligne : https://doi.org/10.1007/s10342-022-01447-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100780
in European Journal of Forest Research > vol 141 n° 3 (June 2022) . - pp 447 - 465[article]Recent advances in forest insect pests and diseases monitoring using UAV-based data: A systematic review / André Duarte in Forests, vol 13 n° 6 (June 2022)
![]()
[article]
Titre : Recent advances in forest insect pests and diseases monitoring using UAV-based data: A systematic review Type de document : Article/Communication Auteurs : André Duarte, Auteur ; Nuno Borralho, Auteur ; Pedro Cabral, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 911 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image captée par drone
[Termes IGN] insecte nuisible
[Termes IGN] maladie parasitaire
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] santé des forêts
[Termes IGN] structure-from-motion
[Termes IGN] surveillance forestièreRésumé : (auteur) Unmanned aerial vehicles (UAVs) are platforms that have been increasingly used over the last decade to collect data for forest insect pest and disease (FIPD) monitoring. These machines provide flexibility, cost efficiency, and a high temporal and spatial resolution of remotely sensed data. The purpose of this review is to summarize recent contributions and to identify knowledge gaps in UAV remote sensing for FIPD monitoring. A systematic review was performed using the preferred reporting items for systematic reviews and meta-analysis (PRISMA) protocol. We reviewed the full text of 49 studies published between 2015 and 2021. The parameters examined were the taxonomic characteristics, the type of UAV and sensor, data collection and pre-processing, processing and analytical methods, and software used. We found that the number of papers on this topic has increased in recent years, with most being studies located in China and Europe. The main FIPDs studied were pine wilt disease (PWD) and bark beetles (BB) using UAV multirotor architectures. Among the sensor types, multispectral and red–green–blue (RGB) bands were preferred for the monitoring tasks. Regarding the analytical methods, random forest (RF) and deep learning (DL) classifiers were the most frequently applied in UAV imagery processing. This paper discusses the advantages and limitations associated with the use of UAVs and the processing methods for FIPDs, and research gaps and challenges are presented. Numéro de notice : A2022-483 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13060911 Date de publication en ligne : 10/06/2022 En ligne : https://doi.org/10.3390/f13060911 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100897
in Forests > vol 13 n° 6 (June 2022) . - n° 911[article]True orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points / Mojdeh Ebrahimikia in Photogrammetric record, vol 37 n° 178 (June 2022)
![]()
[article]
Titre : True orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points Type de document : Article/Communication Auteurs : Mojdeh Ebrahimikia, Auteur ; Ali Hosseininaveh, Auteur Année de publication : 2022 Article en page(s) : pp 161 - 184 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] détection de contours
[Termes IGN] détection du bâti
[Termes IGN] distorsion d'image
[Termes IGN] graphe
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotographie
[Termes IGN] orthophotoplan numérique
[Termes IGN] photogrammétrie aérienne
[Termes IGN] pixel de contour
[Termes IGN] structure-from-motion
[Termes IGN] zone urbaineRésumé : (auteur) After considering state-of-the-art algorithms, this paper presents a novel method for generating true orthophotos from unmanned aerial vehicle (UAV) images of urban areas. The procedure consists of four steps: 2D edge detection in building regions, 3D edge graph generation, digital surface model (DSM) modification and, finally, true orthophoto and orthomosaic generation. The main contribution of this paper is concerned with the first two steps, in which deep-learning approaches are used to identify the structural edges of the buildings and the estimated 3D edge points are added to the point cloud for DSM modification. Running the proposed method as well as four state-of-the-art methods on two different datasets demonstrates that the proposed method outperforms the existing orthophoto improvement methods by up to 50% in the first dataset and by 70% in the second dataset by reducing true orthophoto distortion in the structured edges of the buildings. Numéro de notice : A2022-517 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12409 Date de publication en ligne : 05/04/2022 En ligne : https://doi.org/10.1111/phor.12409 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101065
in Photogrammetric record > vol 37 n° 178 (June 2022) . - pp 161 - 184[article]Efficient dike monitoring using terrestrial SFM photogrammetry / Laurent Froideval in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
![]()
[article]
Titre : Efficient dike monitoring using terrestrial SFM photogrammetry Type de document : Article/Communication Auteurs : Laurent Froideval, Auteur ; Christophe Conessa, Auteur ; Xavier Pellerin Le Bas, Auteur ; Laurent Benoit, Auteur ; Dominique Mouazé, Auteur Année de publication : 2022 Article en page(s) : pp 359 - 366 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] digue
[Termes IGN] sable
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] structure-from-motion
[Termes IGN] surveillance d'ouvrageRésumé : (auteur) Nature based solutions are growing rapidly in order to mitigate in the near future the effects of climate change and rise of sea level on most anthropogenic coasts. In that frame, the CHERbourg bLOC (CHERLOC) project aims to study new coastal engineering solutions (overtopping, sediment transport) thanks to two new artificial units in two test sites (Normandy, France) considering biodiversity preservation but also societal acceptability. This study details an efficient method to monitor such coastal infrastructure using terrestrial Structure from Motion (SfM). In 2021, surveys were conducted to acquire pictures in April, May, June and November. A time series of 3D photogrammetric models was generated using open source SfM software. The first model was georeferenced using Ground Control Points (GCP) measured by Differential Global Navigation Satellite System (DGNSS) so that it could be used as a reference for the following point clouds using surrounding ripraps assumed to be non-mobile through the period of the study. The georeferencing Root Mean Square Error (RMSE) was found to be 1.8 cm for the April model whereas RMSEs of relative registrations of the following dates were found to be sub-centimetric. These results can be used to observe and measure blocks displacements as well as sand volumes evolution throughout the time series. The biggest displacement was found to be 23 cm between April and June. Sand topographic variation shows a continuous accumulation on selected cross-sections between April and November with an overall height accumulation of about 30 cm. Sand volumes measurements show consistent results with an added volume of 3.67 m3 on the previous areas. Numéro de notice : A2022-429 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-359-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-359-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100734
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 359 - 366[article]A context feature enhancement network for building extraction from high-resolution remote sensing imagery / Jinzhi Chen in Remote sensing, vol 14 n° 9 (May-1 2022)
PermalinkUnveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)
PermalinkAutomated inventory of broadleaf tree plantations with UAS imagery / Aishwarya Chandrasekaran in Remote sensing, vol 14 n° 8 (April-2 2022)
PermalinkAssessment of RTK quadcopter and structure-from-motion photogrammetry for fine-scale monitoring of coastal topographic complexity / Stéphane Bertin in Remote sensing, vol 14 n° 7 (April-1 2022)
PermalinkDirect photogrammetry with multispectral imagery for UAV-based snow depth estimation / Kathrin Maier in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
PermalinkComparison of UAV-based LiDAR and digital aerial photogrammetry for measuring crown-level canopy height in the urban environment / Longfei Zhou in Urban Forestry & Urban Greening, vol 69 (March 2022)
PermalinkEstimating aboveground biomass of urban forest trees with dual-source UAV acquired point clouds / Jiayuan Lin in Urban Forestry & Urban Greening, vol 69 (March 2022)
PermalinkEvaluating the 3D integrity of underwater structure from motion workflows / Ian M. Lochhead in Photogrammetric record, vol 37 n° 177 (March 2022)
PermalinkMonitoring coastal vulnerability by using DEMs based on UAV spatial data / Antonio Minervino Amodio in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)
PermalinkUltrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach / Linyuan Li in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
Permalink