Descripteur
Termes IGN > sciences humaines et sociales > géographie humaine > mobilité humaine > durée de trajet
durée de trajet |
Documents disponibles dans cette catégorie (21)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Predicting the variability in pedestrian travel rates and times using crowdsourced GPS data / Michael J. Campbell in Computers, Environment and Urban Systems, vol 97 (October 2022)
[article]
Titre : Predicting the variability in pedestrian travel rates and times using crowdsourced GPS data Type de document : Article/Communication Auteurs : Michael J. Campbell, Auteur ; Philip E. Dennison, Auteur ; Matthew Thompson, Auteur Année de publication : 2022 Article en page(s) : n° 101866 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] base de données localisées
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] chemin le moins coûteux, algorithme du
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] durée de trajet
[Termes IGN] mobilité urbaine
[Termes IGN] navigation pédestre
[Termes IGN] pente
[Termes IGN] planification urbaine
[Termes IGN] trace GPS
[Termes IGN] Utah (Etas-Unis)Résumé : (auteur) Accurately predicting pedestrian travel times is critically valuable in emergency response, wildland firefighting, disaster management, law enforcement, and urban planning. However, the relationship between pedestrian movement and landscape conditions is highly variable between individuals, making it difficult to estimate how long it will take broad populations to get from one location to another on foot. Although functions exist for predicting travel rates, they typically oversimplify the inherent variability of pedestrian travel by assuming the effects of landscapes on movement are universal. In this study, we present an approach for predicting the variability in pedestrian travel rates and times using a large, crowdsourced database of GPS tracks. Acquired from the outdoor recreation website AllTrails, these tracks represent nearly 2000 hikes on a diverse range of trails in Utah and California, USA. We model travel rates as a function of the slope of the terrain by generating a series of non-linear percentile models from the 2.5 th to the 97.5 th by 2.5 percentiles. The 50 th percentile model, representing the hiking speed of the typical individual, demonstrates marked improvement over existing slope-travel rate functions when compared to an independent test dataset. Our results demonstrate novel capacity to estimate travel time variability, with modeled percentiles being able to predict actual percentiles with less than 10% error. Travel rate functions can also be applied to least cost path analysis to provide variability in travel times. Numéro de notice : A2022-599 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.compenvurbsys.2022.101866 Date de publication en ligne : 20/08/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101866 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101452
in Computers, Environment and Urban Systems > vol 97 (October 2022) . - n° 101866[article]Simulating multiple urban land use changes by integrating transportation accessibility and a vector-based cellular automata: a case study on city of Toronto / Xiaocong Xu in Geo-spatial Information Science, vol 25 n° 3 (October 2022)
[article]
Titre : Simulating multiple urban land use changes by integrating transportation accessibility and a vector-based cellular automata: a case study on city of Toronto Type de document : Article/Communication Auteurs : Xiaocong Xu, Auteur ; Dachuan Zhang, Auteur ; Xiaoping Liu, Auteur ; Jinpei Ou, Auteur ; Xinxin Wu, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accessibilité
[Termes IGN] automate cellulaire
[Termes IGN] changement d'occupation du sol
[Termes IGN] durée de trajet
[Termes IGN] modèle de simulation
[Termes IGN] outil d'aide à la décision
[Termes IGN] Toronto
[Termes IGN] transport collectifRésumé : (auteur) The accessibility provided by the transportation system plays an essential role in driving urban growth and urban functional land use changes. Conventional studies on land use simulation usually simplified the accessibility as proximities and adopted the grid-based simulation strategy, leading to the insufficiencies of characterizing spatial geometry of land parcels and simulating subtle land use changes among urban functional types. To overcome these limitations, an Accessibility-interacted Vector-based Cellular Automata (A-VCA) model was proposed for the better simulation of realistic land use change among different urban functional types. The accessibility at both local and zonal scales derived from actual travel time data was considered as a key driver of fine-scale urban land use changes and was integrated into the vector-based CA simulation process. The proposed A-VCA model was tested through the simulation of urban land use changes in the City of Toronto, Canada, during 2012–2016. A vector-based CA without considering the driving factor of accessibility (VCA) and a popular grid-based CA model (Future Land Use Simulation, FLUS) were also implemented for comparisons. The simulation results reveal that the proposed A-VCA model is capable of simulating fine-scale urban land use changes with satisfactory accuracy and good morphological feature (kappa = 0.907, figure of merit = 0.283, and cumulative producer’s accuracy = 72.83% ± 1.535%). The comparison also shows significant outperformance of the A-VCA model against the VCA and FLUS models, suggesting the effectiveness of the accessibility-interactive mechanism and vector-based simulation strategy. The proposed model provides new tools for a better simulation of fine-scale land use changes and can be used in assisting the formulation of urban and transportation planning. Numéro de notice : A2022-451 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/10095020.2022.2043730 Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1080/10095020.2022.2043730 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100397
in Geo-spatial Information Science > vol 25 n° 3 (October 2022)[article]MTLM: a multi-task learning model for travel time estimation / Saijun Xu in Geoinformatica, vol 26 n° 2 (April 2022)
[article]
Titre : MTLM: a multi-task learning model for travel time estimation Type de document : Article/Communication Auteurs : Saijun Xu, Auteur ; Ruoqian Zhang, Auteur ; Wanjun Cheng, Auteur ; Jiajie Xu, Auteur Année de publication : 2022 Article en page(s) : pp 379 - 395 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse coût-avantage
[Termes IGN] apprentissage automatique
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] durée de trajet
[Termes IGN] modèle de simulation
[Termes IGN] transport collectif
[Termes IGN] transport intermodalRésumé : (auteur) Travel time estimation (TTE) is an important research topic in many geographic applications for smart city research. However, existing approaches either ignore the impact of transportation modes, or assume the mode information is known for each training trajectory and the query input. In this paper, we propose a multi-task learning model for travel time estimation called MTLM, which recommends the appropriate transportation mode for users, and then estimates the related travel time of the path. It integrates transportation-mode recommendation task and travel time estimation task to capture the mutual influence between them for more accurate TTE results. Furthermore, it captures spatio-temporal dependencies and transportation mode effect by learning effective representations for TTE. It combines the transportation-mode recommendation loss and TTE loss for training. Extensive experiments on real datasets demonstrate the effectiveness of our proposed methods. Numéro de notice : A2022-325 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : https://doi.org/10.1007/s10707-020-00422-x Date de publication en ligne : 15/08/2020 En ligne : https://doi.org/10.1007/s10707-020-00422-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100488
in Geoinformatica > vol 26 n° 2 (April 2022) . - pp 379 - 395[article]Understanding the movement predictability of international travelers using a nationwide mobile phone dataset collected in South Korea / Yang Xu in Computers, Environment and Urban Systems, vol 92 (March 2022)
[article]
Titre : Understanding the movement predictability of international travelers using a nationwide mobile phone dataset collected in South Korea Type de document : Article/Communication Auteurs : Yang Xu, Auteur ; Dan Zou, Auteur ; Sangwon Park, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] chaîne de Markov
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] Corée du sud
[Termes IGN] durée de trajet
[Termes IGN] mobilité humaine
[Termes IGN] modèle de simulation
[Termes IGN] prévision à court terme
[Termes IGN] téléphone intelligent
[Termes IGN] téléphonie mobile
[Termes IGN] tourisme
[Termes IGN] voyageRésumé : (auteur) The abilities to predict tourist movements are critical to many urban applications, such as travel recommendations, targeted advertising, and infrastructure planning. Despite its importance, our understanding on the movement predictability of urban tourists and visitors is still limited, partially due to difficulties in accessing large scale mobility observations. In this study, we aim to bridge this gap by analyzing a nationwide mobile phone dataset. The dataset captures movement traces of a large number of international travelers who visited South Korea in 2018. By introducing two prediction models, one being Markov chain and the other with a recurrent neural network architecture, we assess how well travelers’ movements can be predicted under different model settings, and examine how predictability relates to travelers’ length of stay and activeness in travel patterns. Since travelers’ destination choices are quite diverse in South Korea, this enables us to further investigate the geographic variation of the models’ performance. Results show that the Markov chain model achieves an overall accuracy between 33.4% (@Acc1 metric) and 64.2% (@Acc5 metric), compared to 41.9% (@Acc1) and 67.7% (@Acc5) for the recurrent neural network model. The prediction capabilities of both models are largely unequal across individuals, with active travelers being more predictable in general. There is a notable geographic variation in the models’ performance, meaning that travelers’ movements are more predictable in some cities, but less in others. We believe this study represents a new effort in portraying the movement predictability of urban tourists and visitors. The analytical framework can be applied to assist tourism planning and service deployment in cities. Numéro de notice : A2022-085 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101753 Date de publication en ligne : 06/01/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101753 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99490
in Computers, Environment and Urban Systems > vol 92 (March 2022)[article]Analyzing routes in Ottoman Greater Syria using historical GIS: The 1849 Saida map / Motti Zohar in Transactions in GIS, vol 25 n° 5 (October 2021)
[article]
Titre : Analyzing routes in Ottoman Greater Syria using historical GIS: The 1849 Saida map Type de document : Article/Communication Auteurs : Motti Zohar, Auteur ; Yuval Ben-Bassat, Auteur Année de publication : 2021 Article en page(s) : pp 2612 - 2640 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] archives
[Termes IGN] carte ancienne
[Termes IGN] dix-neuvième siècle
[Termes IGN] durée de trajet
[Termes IGN] histoire
[Termes IGN] itinéraire
[Termes IGN] Liban
[Termes IGN] réseau routier
[Termes IGN] Syrie
[Termes IGN] système d'information historiqueRésumé : (auteur) Ottoman cartographic materials are important sources of information on 19th and early 20th-century Greater Syria. However, large portions of this corpus have yet to be examined. This study explores a rare mid-19th-century Ottoman map of the Province of Saida preserved in the Ottoman Archive in Istanbul. It lists travel times between villages, towns, and administrative centers in Greater Syria under Ottoman rule, and shows the network of routes connecting these localities. Using an historical GIS approach, we evaluated the characteristics of the map and its cartographical accuracy and merits. The network of routes on the map is compared to route reconstructions based on least-cost-path principles. The discussion focuses on the historical context of the map and the ways in which it reflects the strength of Ottoman rule and familiarity with Greater Syria at the time. Numéro de notice : A2021-814 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12788 Date de publication en ligne : 15/07/2021 En ligne : https://doi.org/10.1111/tgis.12788 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98890
in Transactions in GIS > vol 25 n° 5 (October 2021) . - pp 2612 - 2640[article]Impact of travel time uncertainties on modeling of spatial accessibility: a comparison of street data sources / Yan Lin in Cartography and Geographic Information Science, vol 48 n° 6 (October 2021)PermalinkFinding the most navigable path in road networks / Ramneek Kaur in Geoinformatica, vol 25 n° 1 (January 2021)PermalinkExtracting activity patterns from taxi trajectory data: a two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation / Shuhui Gong in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)PermalinkDynamic floating stations model for emergency medical services with a consideration of traffic data / Chih-Hong Sun in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)PermalinkUber movement data: a proxy for average one-way commuting times by car / Yeran Sun in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)PermalinkSMSM: a similarity measure for trajectory stops and moves / Andre L. Lehmann in International journal of geographical information science IJGIS, vol 33 n° 9 (September 2019)PermalinkModelling geographic accessibility to primary health care facilities : combining open data and geospatial analysis / Olanrewaju Lawal in Geo-spatial Information Science, vol 22 n° 3 (August 2019)PermalinkAnalyse spatiotemporelle des tournées de livraison d’une entreprise de livraison à domicile / Khaled Belhassine in Revue internationale de géomatique, vol 29 n° 2 (avril - juin 2019)PermalinkEmbedding road networks and travel time into distance metrics for urban modelling / Henry Crosby in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)PermalinkUn algorithme pour battre le record du SwissTrainChallenge : poser le pied dans chacun des 26 cantons le plus rapidement possible en utilisant uniquement des transports publics / Emmanuel Clédat in XYZ, n° 157 (décembre 2018 - février 2019)Permalink