Descripteur
Termes descripteurs IGN > imagerie > image spatiale > image satellite > image Landsat > image Landsat-8
image Landsat-8 |



Etendre la recherche sur niveau(x) vers le bas
A novel fire index-based burned area change detection approach using Landsat-8 OLI data / Sicong Liu in European journal of remote sensing, vol 53 n° 1 (2020)
![]()
[article]
Titre : A novel fire index-based burned area change detection approach using Landsat-8 OLI data Type de document : Article/Communication Auteurs : Sicong Liu, Auteur ; Yongjie Zheng, Auteur ; Michele Dalponte, Auteur ; Xiaohua Tong, Auteur Année de publication : 2020 Article en page(s) : pp 104 - 112 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] brûlis
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] seuillage d'image
[Termes descripteurs IGN] signature spectraleRésumé : (auteur) Change detection from multi-temporal remote sensing images is an effective way to identify the burned areas after forest fires. However, the complex image scenario and the similar spectral signatures in multispectral bands may lead to many false positive errors, which make it difficult to exact the burned areas accurately. In this paper, a novel-burned area change detection approach is proposed. It is designed based on a new Normalized Burn Ratio-SWIR (NBRSWIR) index and an automatic thresholding algorithm. The effectiveness of the proposed approach is validated on three Landsat-8 data sets presenting various fire disaster events worldwide. Compared to eight index-based detection methods that developed in the literature, the proposed approach has the best performance in terms of class separability (2.49, 1.74 and 2.06) and accuracy (98.93%, 98.57% and 99.51%) in detecting the burned areas. Simultaneously, it can also better suppress the complex irrelevant changes in the background. Numéro de notice : A2020-167 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2020.1738900 date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1080/22797254.2020.1738900 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94836
in European journal of remote sensing > vol 53 n° 1 (2020) . - pp 104 - 112[article]Transferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
![]()
[article]
Titre : Transferring deep learning models for cloud detection between Landsat-8 and Proba-V Type de document : Article/Communication Auteurs : Gonzalo Mateo-García, Auteur ; Valero Laparra, Auteur ; Dan López-Puigdollers, Auteur ; Luis Gómez-Chova, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 17 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage par transformation
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] conversion de données
[Termes descripteurs IGN] détection des nuages
[Termes descripteurs IGN] échantillonnage de données
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image PROBA
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] masque
[Termes descripteurs IGN] réseau neuronal convolutif
[Termes descripteurs IGN] seuillage de pointsRésumé : (Auteur) Accurate cloud detection algorithms are mandatory to analyze the large streams of data coming from the different optical Earth observation satellites. Deep learning (DL) based cloud detection schemes provide very accurate cloud detection models. However, training these models for a given sensor requires large datasets of manually labeled samples, which are very costly or even impossible to create when the satellite has not been launched yet. In this work, we present an approach that exploits manually labeled datasets from one satellite to train deep learning models for cloud detection that can be applied (or transferred) to other satellites. We take into account the physical properties of the acquired signals and propose a simple transfer learning approach using Landsat-8 and Proba-V sensors, whose images have different but similar spatial and spectral characteristics. Three types of experiments are conducted to demonstrate that transfer learning can work in both directions: (a) from Landsat-8 to Proba-V, where we show that models trained only with Landsat-8 data produce cloud masks 5 points more accurate than the current operational Proba-V cloud masking method, (b) from Proba-V to Landsat-8, where models that use only Proba-V data for training have an accuracy similar to the operational FMask in the publicly available Biome dataset (87.79–89.77% vs 88.48%), and (c) jointly from Proba-V and Landsat-8 to Proba-V, where we demonstrate that using jointly both data sources the accuracy increases 1–10 points when few Proba-V labeled images are available. These results highlight that, taking advantage of existing publicly available cloud masking labeled datasets, we can create accurate deep learning based cloud detection models for new satellites, but without the burden of collecting and labeling a large dataset of images. Numéro de notice : A2020-043 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.024 date de publication en ligne : 10/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.024 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94522
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 1 - 17[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 SL Revue Centre de documentation Revues en salle Disponible 081-2020023 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
![]()
[article]
Titre : Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California Type de document : Article/Communication Auteurs : Matthew L. Clark, Auteur Année de publication : 2020 Article en page(s) : pp 26 - 40 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] Californie (Etats-Unis)
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] couvert végétal
[Termes descripteurs IGN] image AVIRIS
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] Short Waves InfraRedRésumé : (Auteur) The current era of earth observation now provides constellations of open-access, multispectral satellite imagery with medium spatial resolution, greatly increasing the frequency of cloud-free data for analysis. The Landsat satellites have a long historical record, while the newer Sentinel-2 (S2) satellites offer higher temporal, spatial and spectral resolution. The goal of this study was to evaluate the relative benefits of single- and multi-seasonal multispectral satellite data for discriminating detailed forest alliances, as defined by the U.S. National Vegetation Classification system, in a Mediterranean-climate landscape (Sonoma County, California). Results were compared to a companion analysis of simulated hyperspectral satellite data (HyspIRI) for the same study site and reference data (Clark et al., 2018). Experiments used real and simulated S2 and Landsat 8 (L8) data. Simulated S2 and L8 were from HyspIRI images, thereby focusing results on differences in spectral resolution rather than other confounding factors. The Support Vector Machine (SVM) classifier was used in a hierarchical classification of land-cover (Level 1), followed by alliances (Level 2) in forest pixels, and included summer-only and multi-seasonal sets of predictor variables (bands, indices and bands plus indices). Both real and simulated multi-seasonal multispectral variables significantly improved overall accuracy (OA) by 0.2–1.6% for Level 1 tree/no tree classifications and 3.6–25.8% for Level 2 forest alliances. Classifiers with S2 variables tended to be more accurate than L8 variables, particularly for S2, which had 0.4–2.1% and 5.1–11.8% significantly higher OA than L8 for Level 1 tree/no tree and Level 2 forest alliances, respectively. Combining multispectral bands and indices or using just bands was generally more accurate than relying on just indices for classification. Simulated HyspIRI variables from past research had significantly greater accuracy than real L8 and S2 variables, with an average OA increase of 8.2–12.6%. A final alliance-level map used for a deeper analysis used simulated multi-seasonal S2 bands and indices, which had an overall accuracy of 74.3% (Kappa = 0.70). The accuracy of this classification was only 1.6% significantly lower than the best HyspIRI-based classification, which used multi-seasonal metrics (Clark et al., 2018), and there were alliances where the S2-based classifier was more accurate. Within the context of these analyses and study area, S2 spectral-temporal data demonstrated a strong capability for mapping global forest alliances, or similar detailed floristic associations, at medium spatial resolutions (10–30 m). Numéro de notice : A2020-011 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.007 date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94399
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 26 - 40[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 SL Revue Centre de documentation Revues en salle Disponible 081-2020013 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
![]()
[article]
Titre : Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data Type de document : Article/Communication Auteurs : Guo-Hui Yao, Auteur ; Chang-qing Ke, Auteur ; Xiaobing Zhou, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 691 - 703 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse multiéchelle
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] glacier
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] image ALOS-PALSAR
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] interferométrie différentielle
[Termes descripteurs IGN] matrice de covariance
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] segmentationRésumé : (auteur) To study the applicability of full polarimetric synthetic aperture radar (SAR) data to identify alpine glaciers in the central Himalayas, six polarimetric decomposition methods were used to obtain 20 polarimetric characteristic parameters based on the Advanced Land Observing Satellite 2 (ALOS-2) Phased Array type L-band SAR (PALSAR) data. Object-oriented multiscale segmentation was performed on a Landsat 8 Operational Land Imager (OLI) image prior to classification, and the vector boundaries of different types of training samples were selected from the segmented results. We performed a support vector machine (SVM)-based classification on the characteristic parameters from each polarimetric decomposition. All 20 parameters were then screened and combined according to different requirements: the degree of separability of different types of training samples and the type of scattering mechanisms. The results show that the classification accuracy of the incoherent decomposition characteristics based on the covariance matrix is the best, reaching 87%, and it can exceed 91% after adding the local incidence angle to the suite of classifiers. Eventually, more than 93% accuracy was achieved using a combination of multiple polarimetric parameters, which reduced the misclassification between bare ice and rock. We also analyzed the use of controlling factors on the accuracy of alpine glacier identification and found that the polarimetric information and aspect of the glacier surface are the most important factors. The former is the main basis for identification but the latter will confuse the feature distributions of different categories and cause misclassification. Numéro de notice : A2020-077 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2939430 date de publication en ligne : 25/09/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2939430 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94613
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 691 - 703[article]
Titre : Remote Sensing Applications for Agriculture and Crop Modelling Type de document : Monographie Auteurs : Piero Toscano, Editeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2020 Collection : Agronomy Importance : 310 p. ISBN/ISSN/EAN : ISBN 978-3-03928-227-2 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] agriculture
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] carte d'utilisation du sol
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] engrais chimique
[Termes descripteurs IGN] image infrarouge
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] surface cultivéeRésumé : (éditeur) Crop models and remote sensing techniques have been combined and applied in agriculture and crop estimation on local and regional scales, or worldwide, based on the simultaneous development of crop models and remote sensing. The literature shows that many new remote sensing sensors and valuable methods have been developed for the retrieval of canopy state variables and soil properties from remote sensing data for assimilating the retrieved variables into crop models. At the same time, remote sensing has been used in a staggering number of applications for agriculture. This book sets the context for remote sensing and modelling for agricultural systems as a mean to minimize the environmental impact, while increasing production and productivity. The eighteen papers published in this Special Issue, although not representative of all the work carried out in the field of Remote Sensing for agriculture and crop modeling, provide insight into the diversity and the complexity of developments of RS applications in agriculture. Five thematic focuses have emerged from the published papers: yield estimation, land cover mapping, soil nutrient balance, time-specific management zone delineation and the use of UAV as agricultural aerial sprayers. All contributions exploited the use of remote sensing data from different platforms (UAV, Sentinel, Landsat, QuickBird, CBERS, MODIS, WorldView), their assimilation into crop models (DSSAT, AQUACROP, EPIC, DELPHI) or on the synergy of Remote Sensing and modeling, applied to cardamom, wheat, tomato, sorghum, rice, sugarcane and olive. The intended audience is researchers and postgraduate students, as well as those outside academia in policy and practice. Numéro de notice : 25747 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif En ligne : https://www.mdpi.com/books/pdfview/book/2023 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94932 Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images / Cheolhee Yoo in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
PermalinkUtilisation des SIG et de la télédétection pour la cartographie de la susceptibilité aux mouvements d'instabilité de versant dans l'Ouest montagneux de la Côte d'Ivoire / Boyossoro Hélène Kouadio in Revue Française de Photogrammétrie et de Télédétection, n° 221 (novembre 2019)
PermalinkPotential of Landsat-8 and Sentinel-2A composite for land use land cover analysis / Divyesh Varade in Geocarto international, vol 34 n° 14 ([30/10/2019])
PermalinkResidences information extraction from Landsat imagery using the multi-parameter decision tree method / Yujie Yang in Geocarto international, vol 34 n° 14 ([30/10/2019])
PermalinkQuantifying the impact of trees on land surface temperature: a downscaling algorithm at city-scale / Elena Barbierato in European journal of remote sensing, sans n° (2019)
PermalinkCalculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 / Ali Mokhtari in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkEstimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images / Jie Wang in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
PermalinkIncreasing precision for French forest inventory estimates using the k-NN technique with optical and photogrammetric data and model-assisted estimators / Dinesh Babu Irulappa Pillai Vijayakumar in Remote sensing, vol 11 n° 8 (August 2019)
PermalinkCombining spatiotemporal fusion and object-based image analysis for improving wetland mapping in complex and heterogeneous urban landscapes / Meng Zhang in Geocarto international, vol 34 n° 10 ([15/07/2019])
PermalinkA novel algorithm for differentiating cloud from snow sheets using Landsat 8 OLI imagery / Tingting Wu in Advances in space research, vol 64 n°1 (1 July 2019)
Permalink