Descripteur
Termes descripteurs IGN > imagerie > image spatiale > image satellite > image Landsat > image Landsat-8
image Landsat-8 |



Etendre la recherche sur niveau(x) vers le bas
Evaluating metrics derived from Landsat 8 OLI imagery to map crop cover / Rei Sonobe in Geocarto international, vol 34 n° 8 ([15/06/2019])
![]()
[article]
Titre : Evaluating metrics derived from Landsat 8 OLI imagery to map crop cover Type de document : Article/Communication Auteurs : Rei Sonobe, Auteur ; Yuki Yamaya, Auteur ; Hiroshi Tani, Auteur ; Xiufeng Wang, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 839 - 855 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification et arbre de régression
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] rayonnement lumineux
[Termes descripteurs IGN] rayonnement proche infrarouge
[Termes descripteurs IGN] réflectance végétale
[Termes descripteurs IGN] signature spectrale
[Termes descripteurs IGN] surface cultivéeRésumé : (auteur) Developing techniques are required to generate agricultural land cover maps to monitor agricultural fields. Landsat 8 Operational Land Imager (OLI) offers reflectance data over the visible to shortwave-infrared range. OLI offers several advantages, such as adequate spatial and spectral resolution, and 16 day repeat coverage, furthermore, spectral indices derived from Landsat 8 OLI possess great potential for evaluating the status of vegetation. Additionally, classification algorithms are essential for generating accurate maps. Recently, multi-Grained Cascade Forest, which is also called deep forest, was proposed, and it was shown to give highly competitive performance for classification. However, the ability of this algorithm to generate crop maps with satellite data had not yet been evaluated. In this study, the reflectance at 7 bands and 57 spectral indices calculated from Landsat 8 OLI data were evaluated for its potential for crop type identification. Numéro de notice : A2019-514 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1425739 date de publication en ligne : 19/01/2018 En ligne : https://doi.org/10.1080/10106049.2018.1425739 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93823
in Geocarto international > vol 34 n° 8 [15/06/2019] . - pp 839 - 855[article]Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data : A case study of Wuhan, Central China / Xin Huang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
![]()
[article]
Titre : Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data : A case study of Wuhan, Central China Type de document : Article/Communication Auteurs : Xin Huang, Auteur ; Ying Wang, Auteur Année de publication : 2019 Article en page(s) : pp 119 - 131 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] arbre urbain
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] ilot thermique urbain
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Landsat-TIRS
[Termes descripteurs IGN] image ZiYuan-3
[Termes descripteurs IGN] morphologie urbaine
[Termes descripteurs IGN] régression multiple
[Termes descripteurs IGN] température au sol
[Termes descripteurs IGN] Wuhan (Chine)Résumé : (Auteur) The Urban heat island (UHI) effect is an increasingly serious problem in urban areas. Information on the driving forces of intra-urban temperature variation is crucial for ameliorating the urban thermal environment. Although prior studies have suggested that urban morphology (e.g., landscape pattern, land-use type) can significantly affect land surface temperature (LST), few studies have explored the comprehensive effect of 2D and 3D urban morphology on LST in different urban functional zones (UFZs), especially at a fine scale. Therefore, in this research, we investigated the relationship between 2D/3D urban morphology and summer daytime LST in Wuhan, a representative megacity in Central China, which is known for its extremely hot weather in summer, by adopting high-resolution remote sensing data and geographical information data. The “urban morphology” in this study consists of 2D urban morphological parameters, 3D urban morphological parameters, and UFZs. Our results show that: (1) The LST is significantly related to 2D and 3D urban morphological parameters, and the scattered distribution of buildings with high rise can facilitate the mitigation of LST. Although sky view factor (SVF) is an important measure of 3D urban geometry, its influence on LST is complicated and context-dependent. (2) Trees are the most influential factor in reducing LST, and the cooling efficiency mainly depends on their proportions. The fragmented and irregular distribution of grass/shrubs also plays a significant role in alleviating LST. (3) With respect to UFZs, the residential zone is the largest heat source, whereas the highest LST appears in commercial and industrial zones. (4) Results of the multivariate regression and variation partitioning indicate that the relative importance of 2D and 3D urban morphological parameters on LST varies among different UFZs and 2D morphology outperforms 3D morphology in LST modulation. The results are generally consistent in spring, summer and autumn. These findings can provide insights for urban planners and designers on how to mitigate the surface UHI (SUHI) effect via rational landscape design and urban management during summer daytime. Numéro de notice : A2019-456 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.010 date de publication en ligne : 22/04/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92869
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 119 - 131[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019063 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation / Qing Wang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
![]()
[article]
Titre : A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation Type de document : Article/Communication Auteurs : Qing Wang, Auteur ; Hua Sun, Auteur ; Ruopu Li, Auteur ; Guangxing Wang, Auteur Année de publication : 2019 Article en page(s) : pp 145 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] géostatistique
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image SPOT 5
[Termes descripteurs IGN] Mongolie intérieure (Chine)
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] utilisation du sol
[Termes descripteurs IGN] variogrammeRésumé : (Auteur) Traditional parametric methods for classification of land use and land cover (LULC) types using remote sensing imagery assume a global distribution model and fail to consider local variation of categorical variables. Differently, non-parametric methods do not make any statistical assumptions but are typically sensitive to the sample sizes of training sample data that usually require a high cost to collect in the field. Geostatistical classifiers, such as indicator kriging and simulation, are local variability-based methods that exhibit great potential for image-based classification of LULC types. However, variogram models required are highly sensitive to the spatial configuration of training samples as well as sample size given a study area. Moreover, when a large number of spectral variables are considered into kriging systems, modeling the variograms and cross-variograms would be problematic. To circumvent these issues, this study extended the geostatistical methods from a 2-dimensional geographic space to a m-dimensional image feature space to derive feature-space indicator variograms (FSIVs). Moreover, a novel stochastic simulation classification algorithm, Feature-Space Indicator Simulation (FSIS), was proposed and examined for classification of LULC types in Duolun County located in Inner Mongolia and in Huang-Feng-Qiao (HFQ) forest farm, Hunan of China. In Duolun, six LULC types were involved and in HFQ a complicated forest landscape consisting of nine forest types plus water, built-up area, and agricultural/bare soil, was classified. The classification results of FSIS were compared with another feature-space geostatistical classifier – feature-space indicator kriging (FSIK), a traditional parametric method – maximum likelihood (ML), a widely used nonparametric method – support vector machine (SVM), and a recently popular method – random forest (RF). The results showed that compared with ML, SVM and RF, in both study areas FSIS statistically significantly increased the accuracy of the classifications by 10.0–29.9% for percentage correct and 19.0–47.6% for Kappa statistic. Compared with FSIK, FSIS also improved the classification accuracy but the accuracy increases were relatively smaller with the percentages correct of 3.5% and 7.6% and the Kappa values of 4.6% and 8.6% for Duolun and HFQ, respectively. Moreover, FSIS led to the spatial uncertainties of the classification estimates as the quality measure of the estimates. In addition, the results also demonstrated that FSIVs were sensitive to the within-class heterogeneity but not very much to the size of training samples. Overall, FSIS exhibited the greater potential to improve the classification accuracy of LULC and forest types using remote sensing image. Numéro de notice : A2019-457 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.011 date de publication en ligne : 25/04/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92871
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 145 - 165[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019063 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Using Sentinel-1A DInSAR interferometry and Landsat 8 data for monitoring water level changes in two lakes in Crete, Greece / D.D. Alexakis in Geocarto international, vol 34 n° 7 ([01/06/2019])
![]()
[article]
Titre : Using Sentinel-1A DInSAR interferometry and Landsat 8 data for monitoring water level changes in two lakes in Crete, Greece Type de document : Article/Communication Auteurs : D.D. Alexakis, Auteur ; E.G. Stavroulaki, Auteur ; I.K. Tsanis, Auteur Année de publication : 2019 Article en page(s) : pp 703 - 721 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bande C
[Termes descripteurs IGN] Crète (île)
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] lac
[Termes descripteurs IGN] niveau de l'eau
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] surveillance hydrologiqueRésumé : (auteur) Differential Interferometric Synthetic Aperture Radar (DInSAR) methodology has been successfully employed to detect water level changes and produce corresponding water level variation maps. In this study, Agia and Kournas lakes, located in Western Crete, Greece, were used as pilot areas to monitor water level change with means of SAR interferometry and auxiliary Earth Observation (EO) data. The water level variation was monitored for the period 2015–2016, using Sentinel-1A imageries and corresponding stage water level data. Landsat 8 data were additionally used to study vegetation regime and surface water extent and how these parameters affect interferograms performance. The results highlighted the fact that the combination of SAR backscattering intensity and unwrapped phase can provide additional insight into hydrological studies. The overall analysis of both interferometric characteristics and backscattering mechanism denoted their potential in enhancing the reliability of the water-level retrieval scheme and optimizing the capture of hydrological patterns spatial distribution. Numéro de notice : A2019-512 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1434685 date de publication en ligne : 11/02/2018 En ligne : https://doi.org/10.1080/10106049.2018.1434685 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93821
in Geocarto international > vol 34 n° 7 [01/06/2019] . - pp 703 - 721[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2019071 SL Livre Centre de documentation Revues en salle Disponible Including Sentinel-1 radar data to improve the disaggregation of MODIS land surface temperature data / Abdelhakim Amazirh in ISPRS Journal of photogrammetry and remote sensing, vol 150 (April 2019)
![]()
[article]
Titre : Including Sentinel-1 radar data to improve the disaggregation of MODIS land surface temperature data Type de document : Article/Communication Auteurs : Abdelhakim Amazirh, Auteur ; Olivier Merlin, Auteur ; Salah Er-Raki, Auteur Année de publication : 2019 Article en page(s) : pp 11 - 26 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] désagrégation
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] image Terra-MODIS
[Termes descripteurs IGN] Maroc
[Termes descripteurs IGN] modèle de transfert radiatif
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression multiple
[Termes descripteurs IGN] température au sol
[Termes descripteurs IGN] zone semi-arideRésumé : (Auteur) The use of land surface temperature (LST) for monitoring the consumption and water status of crops requires data at fine spatial and temporal resolutions. Unfortunately, the current spaceborne thermal sensors provide data at either high temporal (e.g. MODIS: Moderate Resolution Imaging Spectro-radiometer) or high spatial (e.g. Landsat) resolution separately. Disaggregating low spatial resolution (LR) LST data using ancillary data available at high spatio-temporal resolution could compensate for the lack of high spatial resolution (HR) LST observations. Existing LST downscaling approaches generally rely on the fractional green vegetation cover (fgv) derived from HR reflectances but they do not take into account the soil water availability to explain the spatial variability in LST at HR. In this context, a new method is developed to disaggregate kilometric MODIS LST at 100 m resolution by including the Sentinel-1 (S-1) backscatter, which is indirectly linked to surface soil moisture, in addition to the Landsat-7 and Landsat-8 (L-7 & L-8) reflectances. The approach is tested over two different sites – an 8 km by 8 km irrigated crop area named “R3” and a 12 km by 12 km rainfed area named “Sidi Rahal” in central Morocco (Marrakech) – on the seven dates when S-1, and L-7 or L-8 acquisitions coincide with a one-day precision during the 2015–2016 growing season. The downscaling methods are applied to the 1 km resolution MODIS-Terra LST data, and their performance is assessed by comparing the 100 m disaggregated LST to Landsat LST in three cases: no disaggregation, disaggregation using Landsat fgv only, disaggregation using both Landsat fgv and S-1 backscatter. When including fgv only in the disaggregation procedure, the mean root mean square error in LST decreases from 4.20 to 3.60 °C and the mean correlation coefficient (R) increases from 0.45 to 0.69 compared to the non-disaggregated case within R3. The new methodology including the S-1 backscatter as input to the disaggregation is found to be systematically more accurate on the available dates with a disaggregation mean error decreasing to 3.35 °C and a mean R increasing to 0.75. Numéro de notice : A2019-136 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.02.004 date de publication en ligne : 15/02/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.02.004 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92467
in ISPRS Journal of photogrammetry and remote sensing > vol 150 (April 2019) . - pp 11 - 26[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019041 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019043 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt An image-pyramid-based raster-to-vector conversion (IPBRTVC) framework for consecutive-scale cartography and synchronized generalization of classic objects / Chang Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 3 (March 2019)
PermalinkNear real-time deforestation detection in Malaysia and Indonesia using change vector analysis with three sensors / Pauline Perbet in International Journal of Remote Sensing IJRS, vol 40 n°19 (February 2019)
PermalinkTree cover mapping using hybrid fuzzy C-means method and multispectral satellite images / Linda Gulbe in Baltic forestry, vol 25 n° 1 (2019)
PermalinkMonitoring crops water needs at high spatio-temporal resolution by synergy of optical / thermal and radar observations / Abdelhakim Amazirh (2019)
PermalinkUrban impervious surface estimation from remote sensing and social data / Yan Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 12 (December 2018)
PermalinkApplication of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: a case study from Shahr-e-Babak, Kerman, south of Iran / Morteza Safari in Geocarto international, vol 33 n° 11 (November 2018)
PermalinkCartographie des forêts humides dans la région d’El Kala (Algérie) à l’aide des outils d’observation de la Terre / Asma Kahli in Revue d'écologie, vol 73 n° 4 (octobre - décembre 2018)
PermalinkEffects of a large-scale late spring frost on a beech (Fagus sylvatica L.) dominated Mediterranean mountain forest derived from the spatio-temporal variations of NDVI / Angelo Nolè in Annals of Forest Science [en ligne], vol 75 n° 3 (September 2018)
PermalinkA method of downscaling temperature maps based on analytical hillshading for use in species distribution modelling / Ángel M. Felicísimo in Cartography and Geographic Information Science, Vol 45 n° 4 (July 2018)
PermalinkMulti-scale assessment of invasive plant species diversity using Pléiades 1A, RapidEye and Landsat-8 data / Siddhartha Khare in Geocarto international, vol 33 n° 7 (July 2018)
Permalink