Descripteur
Documents disponibles dans cette catégorie (542)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Forest cover mapping based on a combination of aerial images and Sentinel-2 satellite data compared to National Forest Inventory data / Selina Ganz in Forests, vol 11 n° 12 (December 2020)
[article]
Titre : Forest cover mapping based on a combination of aerial images and Sentinel-2 satellite data compared to National Forest Inventory data Type de document : Article/Communication Auteurs : Selina Ganz, Auteur ; Petra Adler, Auteur ; Gerald Kändler, Auteur Année de publication : 2020 Article en page(s) : n° 1322 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] Bade-Wurtemberg (Allemagne)
[Termes IGN] carte forestière
[Termes IGN] image aérienne
[Termes IGN] image Sentinel-MSI
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle numérique de surface
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Research Highlights: This study developed the first remote sensing-based forest cover map of Baden-Württemberg, Germany, in a very high level of detail.
Background and Objectives: As available global or pan-European forest maps have a low level of detail and the forest definition is not considered, administrative data are often oversimplified or out of date. Consequently, there is an important need for spatio-temporally explicit forest maps. The main objective of the present study was to generate a forest cover map of Baden-Württemberg, taking the German forest definition into account. Furthermore, we compared the results to NFI data; incongruences were categorized and quantified. Materials and
Methods: We used a multisensory approach involving both aerial images and Sentinel-2 data. The applied methods are almost completely automated and therefore suitable for area-wide forest mapping.
Results: According to our results, approximately 37.12% of the state is covered by forest, which agrees very well with the results of the NFI report (37.26% ± 0.44%). We showed that the forest cover map could be derived by aerial images and Sentinel-2 data including various data acquisition conditions and settings. Comparisons between the forest cover map and 34,429 NFI plots resulted in a spatial agreement of 95.21% overall. We identified four reasons for incongruences: (a) edge effects at forest borders (2.08%), (b) different forest definitions since NFI does not specify minimum tree height (2.04%), (c) land cover does not match land use (0.66%) and (d) errors in the forest cover layer (0.01%).
Conclusions: The introduced approach is a valuable technique for mapping forest cover in a high level of detail. The developed forest cover map is frequently updated and thus can be used for monitoring purposes and for assisting a wide range of forest science, biodiversity or climate change-related studies.Numéro de notice : A2020-845 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f11121322 Date de publication en ligne : 12/12/2020 En ligne : https://doi.org/10.3390/f11121322 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98633
in Forests > vol 11 n° 12 (December 2020) . - n° 1322[article]Improving aboveground biomass estimates by taking into account density variations between tree components / Antoine Billard in Annals of Forest Science, vol 77 n° 4 (December 2020)
[article]
Titre : Improving aboveground biomass estimates by taking into account density variations between tree components Type de document : Article/Communication Auteurs : Antoine Billard, Auteur ; Rodolphe Bauer, Auteur ; Frédéric Mothe, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 103 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] allométrie
[Termes IGN] base de données forestières
[Termes IGN] biomasse aérienne
[Termes IGN] bois de chauffage
[Termes IGN] branche (arbre)
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] écorce
[Termes IGN] hauteur des arbres
[Termes IGN] résineux
[Termes IGN] tomographie radar
[Termes IGN] volume en bois
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Key message: Strong density differences were observed between stem wood at 1.30 m and other tree components (stem wood, stem bark, knots, branch stumps and branches). The difference, up to 40% depending on the component, should be taken into account when estimating the biomass available for industrial uses, mainly fuelwood and wood for chemistry.
Context: Basic density is a major variable in the calculation of tree biomass. However, it is usually measured on stem wood only and at breast height.
Aims: The objectives of this study were to compare basic density of stem wood at 1.30 m with other tree components and assess the impact of differences on biomass.
Methods: Three softwood species were studied: Abies alba Mill., Picea abies (L.) H. Karst., Pseudotsuga menziesii (Mirb.) Franco. X-Ray computed tomography was used to measure density.
Results: Large differences were observed between components. Basic density of components was little influenced by tree size and stand density. Overall, bark, knot and branch biomasses were highly underestimated by using basic density measured at 1.30 m.
Conclusion: Using available wood density databases mainly based on breast height measurements would lead to important biases (up to more than 40%) on biomass estimates for some tree components. Further work is necessary to complete available databases.Numéro de notice : A2020-714 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s13595-020-00999-1 Date de publication en ligne : 26/10/2020 En ligne : https://doi.org/10.1007/s13595-020-00999-1 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96282
in Annals of Forest Science > vol 77 n° 4 (December 2020) . - n° 103[article]Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
[article]
Titre : Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks Type de document : Article/Communication Auteurs : Felix Schiefer, Auteur ; Teja Kattenborn, Auteur ; Annett Frick, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 205-215 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] arbre (flore)
[Termes IGN] carte forestière
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] espèce végétale
[Termes IGN] Forêt-Noire, massif de la
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] segmentation sémantique
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost-effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree species do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in temperate forests. We used multicopter UAVs to obtain very high-resolution ( Numéro de notice : A2020-706 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.015 Date de publication en ligne : 03/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.015 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96236
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 205-215[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2020121 RAB Revue Centre de documentation En réserve L003 Disponible Stand-level mortality models for Nordic boreal forests / Jouni Siipilehto in Silva fennica, vol 54 n° 5 (December 2020)
[article]
Titre : Stand-level mortality models for Nordic boreal forests Type de document : Article/Communication Auteurs : Jouni Siipilehto, Auteur ; Micky Allen, Auteur ; Urban Nilsson, Auteur ; Andreas Brunner, Auteur ; et al., Auteur ; Urban Nilsson Année de publication : 2020 Article en page(s) : n° 10414 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] âge du peuplement forestier
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de simulation
[Termes IGN] modélisation de la forêt
[Termes IGN] mortalité
[Termes IGN] Norvège
[Termes IGN] régression logistique
[Termes IGN] Suède
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) New mortality models were developed for the purpose of improving long-term growth and yield simulations in Finland, Norway, and Sweden and were based on permanent national forest inventory plots from Sweden and Norway. Mortality was modelled in two steps. The first model predicts the probability of survival, while the second model predicts the proportion of basal area in surviving trees for plots where mortality has occurred. In both models, the logistic function was used. The models incorporate the variation in prediction period length and in plot size. Validation of both models indicated unbiased mortality rates with respect to various stand characteristics such as stand density, average tree diameter, stand age, and the proportion of different tree species, Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.), and broadleaves. When testing against an independent dataset of unmanaged spruce-dominated stands in Finland, the models provided unbiased prediction with respect to stand age. Numéro de notice : A2020-854 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.14214/sf.10414 Date de publication en ligne : 01/12/2020 En ligne : https://doi.org/10.14214/sf.10414 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98710
in Silva fennica > vol 54 n° 5 (December 2020) . - n° 10414[article]Use of remote sensing data to improve the efficiency of National Forest Inventories: A case study from the United States National Forest Inventory / Andrew J. Lister in Forests, vol 11 n° 12 (December 2020)
[article]
Titre : Use of remote sensing data to improve the efficiency of National Forest Inventories: A case study from the United States National Forest Inventory Type de document : Article/Communication Auteurs : Andrew J. Lister, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 1364 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] échantillonnage
[Termes IGN] Etats-Unis
[Termes IGN] image aérienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] surveillance forestière
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Globally, forests are a crucial natural resource, and their sound management is critical for human and ecosystem health and well-being. Efforts to manage forests depend upon reliable data on the status of and trends in forest resources. When these data come from well-designed natural resource monitoring (NRM) systems, decision makers can make science-informed decisions. National forest inventories (NFIs) are a cornerstone of NRM systems, but require capacity and skills to implement. Efficiencies can be gained by incorporating auxiliary information derived from remote sensing (RS) into ground-based forest inventories. However, it can be difficult for countries embarking on NFI development to choose among the various RS integration options, and to develop a harmonized vision of how NFI and RS data can work together to meet monitoring needs. The NFI of the United States, which has been conducted by the USDA Forest Service’s (USFS) Forest Inventory and Analysis (FIA) program for nearly a century, uses RS technology extensively. Here we review the history of the use of RS in FIA, beginning with general background on NFI, FIA, and sampling statistics, followed by a description of the evolution of RS technology usage, beginning with paper aerial photography and ending with present day applications and future directions. The goal of this review is to offer FIA’s experience with NFI-RS integration as a case study for other countries wishing to improve the efficiency of their NFI programs. Numéro de notice : A2020-844 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f11121364 Date de publication en ligne : 19/12/2020 En ligne : https://doi.org/10.3390/f11121364 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98632
in Forests > vol 11 n° 12 (December 2020) . - n° 1364[article]Ancient forest statistics provide centennial perspective over the status and dynamics of forest area in France / Timothée Audinot in Annals of Forest Science, vol 77 n° 3 (September 2020)PermalinkAssessing local trends in indicators of ecosystem services with a time series of forest resource maps / Matti Katila in Silva fennica, vol 54 n° 4 (September 2020)PermalinkPredicting biomass dynamics at the national extent from digital aerial photogrammetry / Bronwyn Price in International journal of applied Earth observation and geoinformation, vol 90 (August 2020)PermalinkAnalysing the quality of Swiss National Forest Inventory measurements of woody species richness / Berthold Traub in Forest ecosystems, vol 7 (2020)PermalinkA century of National Forest Inventory in Norway – informing past, present, and future decisions / Johannes Breidenbach in Forest ecosystems, vol 7 (2020)PermalinkImproving precision of field inventory estimation of aboveground biomass through an alternative view on plot biomass / Christoph Kleinn in Forest ecosystems, vol 7 (2020)PermalinkL’inventaire forestier national pour un suivi permanent, multi-échelles et multi-thématiques de la forêt française et des ressources bois mobilisables / Antoine Colin in Sciences, eaux & territoires, n° 33 (avril 2020)PermalinkSize-class structure of the forests of Finland during 1921–2013: a recovery from centuries of exploitation, guided by forest policies / Helena M. Henttonen in European Journal of Forest Research, vol 139 n° 2 (April 2020)PermalinkAssessing forest availability for wood supply in Europe / Iciar A. Alberdi in Forest policy and economics, vol 111 (February 2020)PermalinkPermalink