Descripteur
Termes descripteurs IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage profond
apprentissage profond |



Etendre la recherche sur niveau(x) vers le bas
A graph-based semi-supervised approach to classification learning in digital geographies / Pengyuan Liu in Computers, Environment and Urban Systems, vol 86 (March 2021)
![]()
[article]
Titre : A graph-based semi-supervised approach to classification learning in digital geographies Type de document : Article/Communication Auteurs : Pengyuan Liu, Auteur ; Stefano de Sabbata, Auteur Année de publication : 2021 Article en page(s) : n° 101583 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] analyse contextuelle
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] approche participative
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification semi-dirigée
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] étiquetage sémantique
[Termes descripteurs IGN] partage de données localisées
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] Time-geographyRésumé : (auteur) As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday experiences are mediated. As such, increasing interest has emerged in exploring how the content shared through those online platforms comes to contribute to the collaborative creation of places in physical space at the urban scale. Exploring digital geographies of social media data using methods such as qualitative coding (i.e., content labelling) is a flexible but complex task, commonly limited to small samples due to its impracticality over large datasets. In this paper, we propose a new tool for studies in digital geographies, bridging qualitative and quantitative approaches, able to learn a set of arbitrary labels (qualitative codes) on a small, manually-created sample and apply the same labels on a larger set. We introduce a semi-supervised, deep neural network approach to classify geo-located social media posts based on their textual and image content, as well as geographical and temporal aspects. Our innovative approach is rooted in our understanding of social media posts as augmentations of the time-space configurations that places are, and it comprises a stacked multi-modal autoencoder neural network to create joint representations of text and images, and a spatio-temporal graph convolution neural network for semi-supervised classification. The results presented in this paper show that our approach performs the classification of social media content with higher accuracy than traditional machine learning models as well as two state-of-art deep learning frameworks. Numéro de notice : A2021-024 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2020.101583 date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101583 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96608
in Computers, Environment and Urban Systems > vol 86 (March 2021) . - n° 101583[article]PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery / Xian Sun in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery Type de document : Article/Communication Auteurs : Xian Sun, Auteur ; Peijin Wang, Auteur ; Cheng Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 50 - 65 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse contextuelle
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] objet géographique complexe
[Termes descripteurs IGN] rectangle englobant minimumRésumé : (auteur) In recent years, deep learning-based algorithms have brought great improvements to rigid object detection. In addition to rigid objects, remote sensing images also contain many complex composite objects, such as sewage treatment plants, golf courses, and airports, which have neither a fixed shape nor a fixed size. In this paper, we validate through experiments that the results of existing methods in detecting composite objects are not satisfying enough. Therefore, we propose a unified part-based convolutional neural network (PBNet), which is specifically designed for composite object detection in remote sensing imagery. PBNet treats a composite object as a group of parts and incorporates part information into context information to improve composite object detection. Correct part information can guide the prediction of a composite object, thus solving the problems caused by various shapes and sizes. To generate accurate part information, we design a part localization module to learn the classification and localization of part points using bounding box annotation only. A context refinement module is designed to generate more discriminative features by aggregating local context information and global context information, which enhances the learning of part information and improve the ability of feature representation. We selected three typical categories of composite objects from a public dataset to conduct experiments to verify the detection performance and generalization ability of our method. Meanwhile, we build a more challenging dataset about a typical kind of complex composite objects, i.e., sewage treatment plants. It refers to the relevant information from authorities and experts. This dataset contains sewage treatment plants in seven cities in the Yangtze valley, covering a wide range of regions. Comprehensive experiments on two datasets show that PBNet surpasses the existing detection algorithms and achieves state-of-the-art accuracy. Numéro de notice : A2021-105 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.015 date de publication en ligne : 16/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.015 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96891
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 50 - 65[article]Robust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : Robust unsupervised small area change detection from SAR imagery using deep learning Type de document : Article/Communication Auteurs : Xinzheng Zhang, Auteur ; Hang Su, Auteur ; Ce Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] algorithme de superpixels
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] filtre de déchatoiement
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] ondelette
[Termes descripteurs IGN] reconstruction
[Termes descripteurs IGN] regroupement de donnéesRésumé : (auteur) Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection. Numéro de notice : A2021-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.004 date de publication en ligne : 17/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96879
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 79 - 94[article]GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening / Hao Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : GTP-PNet: A residual learning network based on gradient transformation prior for pansharpening Type de document : Article/Communication Auteurs : Hao Zhang, Auteur ; Jiayi Ma, Auteur Année de publication : 2021 Article en page(s) : pp 223 - 239 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] gradient
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image panchromatique
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] pansharpening (fusion d'images)
[Termes descripteurs IGN] régressionRésumé : (auteur) Pansharpening aims to fuse low-resolution multi-spectral image and high-resolution panchromatic (PAN) image to produce a high-resolution multi-spectral (HRMS) image. In this paper, a new residual learning network based on gradient transformation prior, termed as GTP-PNet, is proposed to generate the high-quality HRMS image with accurate spectral distribution as well as reasonable spatial structure. Different from previous deep models that only rely on supervision of the HRMS reference image, we introduce the gradient transformation prior to the deep model, so as to improve the solution accuracy. Our model consists of two networks, namely gradient transformation network (TNet) and pansharpening network (PNet). TNet is committed to seeking the nonlinear mapping between gradients of PAN and HRMS images, which is essentially a spatial relationship regression of imaging bands in different ranges. PNet is the residual learning network used to generate the HRMS image, which is not only supervised by the HRMS reference image, but also constrained by the trained TNet. As a result, the HRMS image generated by PNet not only approximates the HRMS reference image in the spectral distribution, but also conforms to the gradient transformation prior in the spatial structure. Experimental results demonstrate the significant superiority of our method over the current state-of-the-arts in terms of both subjective visual effect and quantitative metrics. We also apply our method to produce the HR normalized difference vegetation index in remote sensing, which can achieve the best performance. Moreover, our method is much competitive compared with the state-of-the-art alternatives in running efficiency. Numéro de notice : A2021-089 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.014 date de publication en ligne : 11/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96859
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 223 - 239[article]Multiscale CNN with autoencoder regularization joint contextual attention network for SAR image classification / Zitong Wu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : Multiscale CNN with autoencoder regularization joint contextual attention network for SAR image classification Type de document : Article/Communication Auteurs : Zitong Wu, Auteur ; Biao Hou, Auteur ; Licheng Jiao, Auteur Année de publication : 2021 Article en page(s) : pp 1200 - 1213 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] algorithme d'interprétation
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification contextuelle
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] image radar moiréeRésumé : (auteur) Synthetic aperture radar (SAR) image classification is a fundamental research direction in image interpretation. With the development of various intelligent technologies, deep learning techniques are gradually being applied to SAR image classification. In this study, a new SAR classification algorithm known as the multiscale convolutional neural network with an autoencoder regularization joint contextual attention network (MCAR-CAN) is proposed. The MCAR-CAN has two branches: the autoencoder regularization branch and the context attention branch. First, autoencoder regularization is used for the reconstruction of the input to regularize the classification in the autoencoder regularization branch. Multiscale input and an asymmetric structure of the autoencoder branch cause the network more to be focused on classification than on reconstruction. Second, the attention mechanism is used to produce an attention map in which each attention weight corresponds to a context correlation in attention branch. The robust features are obtained by the attention mechanism. Finally, the features obtained by the two branches are spliced for classification. In addition, a new training strategy and a postprocessing method are designed to further improve the classification accuracy. Experiments performed on the data from three SAR images demonstrated the effectiveness and robustness of the proposed algorithm. Numéro de notice : A2021-113 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3004911 date de publication en ligne : 07/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3004911 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96918
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1200 - 1213[article]Aleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis / Max Mehltretter in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkCombining deep learning and mathematical morphology for historical map segmentation / Yizi Chen (2021)
PermalinkEvaluation of a neural network with uncertainty for detection of ice and water in SAR imagery / Nazanin Asadi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkImproving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / R. Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkLANet: Local attention embedding to improve the semantic segmentation of remote sensing images / Lei Ding in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkSuper-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkThe use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkAutomatic building footprint extraction from UAV images using neural networks / Zoran Kokeza in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)
PermalinkChoosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (December 2020)
PermalinkA deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer / Xing Yan in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
Permalink