Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage profond
apprentissage profond |
Documents disponibles dans cette catégorie (748)


Etendre la recherche sur niveau(x) vers le bas
Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning / Iris de Gelis in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
![]()
[article]
Titre : Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning Type de document : Article/Communication Auteurs : Iris de Gelis, Auteur ; Sébastien Lefèvre, Auteur ; Thomas Corpetti, Auteur Année de publication : 2023 Article en page(s) : pp 274 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] modèle numérique de surface
[Termes IGN] réseau neuronal siamois
[Termes IGN] semis de points
[Termes IGN] végétation
[Termes IGN] zone urbaineRésumé : (auteur) This study is concerned with urban change detection and categorization in point clouds. In such situations, objects are mainly characterized by their vertical axis, and the use of native 3D data such as 3D Point Clouds (PCs) is, in general, preferred to rasterized versions because of significant loss of information implied by any rasterization process. Yet, for obvious practical reasons, most existing studies only focus on 2D images for change detection purpose. In this paper, we propose a method capable of performing change detection directly within 3D data. Despite recent deep learning developments in remote sensing, to the best of our knowledge there is no such method to tackle multi-class change segmentation that directly processes raw 3D PCs. Thereby, based on advances in deep learning for change detection in 2D images and for analysis of 3D point clouds, we propose a deep Siamese KPConv network that deals with raw 3D PCs to perform change detection and categorization in a single step. Experimental results are conducted on synthetic and real data of various kinds (LiDAR, multi-sensors). Tests performed on simulated low density LiDAR and multi-sensor datasets show that our proposed method can obtain up to 80% of mean of IoU over classes of changes, leading to an improvement ranging from 10% to 30% over the state-of-the-art. A similar range of improvements is attainable on real data. Then, we show that pre-training Siamese KPConv on simulated PCs allows us to greatly reduce (more than 3,000
) the annotations required on real data. This is a highly significant result to deal with practical scenarios. Finally, an adaptation of Siamese KPConv is realized to deal with change classification at PC scale. Our network overtakes the current state-of-the-art deep learning method by 23% and 15% of mean of IoU when assessed on synthetic and public Change3D datasets, respectively. The code is available at the following link: https://github.com/IdeGelis/torch-points3d-SiameseKPConv.Numéro de notice : A2023-147 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2023.02.001 Date de publication en ligne : 17/02/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.02.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102805
in ISPRS Journal of photogrammetry and remote sensing > vol 197 (March 2023) . - pp 274 - 291[article]Analysing urban growth using machine learning and open data: An artificial neural network modelled case study of five Greek cities / Pavlos Tsagkis in Sustainable Cities and Society, vol 89 (February 2023)
![]()
[article]
Titre : Analysing urban growth using machine learning and open data: An artificial neural network modelled case study of five Greek cities Type de document : Article/Communication Auteurs : Pavlos Tsagkis, Auteur ; Efthimios Bakogiannis, Auteur ; Alexandros Nikitas, Auteur Année de publication : 2023 Article en page(s) : n° 104337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] Corine (base de données)
[Termes IGN] croissance urbaine
[Termes IGN] données localisées libres
[Termes IGN] étalement urbain
[Termes IGN] Grèce
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle orienté agent
[Termes IGN] OpenStreetMap
[Termes IGN] planification urbaine
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Urban development if not planned and managed adequately can be unsustainable. Urban growth models have been a powerful toolkit to help tackling this challenge. In this paper, we use a machine learning approach, to apply an urban growth model to five of the largest cities in Greece. Specifically, we first develop a methodology to collect, organise, handle and transform historical open spatial data, concerning various impact factors, into machine learning data. Such factors involve social, economic, biophysical, neighbouring-related and political driving forces, which must be transformed into tabular data. We also provide an artificial neural network (ANN) model and the methodology to train and evaluate it using goodness-of-fit metrics, which in turn provide the best weights of impact factors. Finally, we execute a prediction for 2030, presenting the results and output maps for each of the five case study cities. As our study is based on pan-European datasets, our model can be used for any area within Europe, using the open-source utility developed to support it. In this sense, our work provides local policy-makers and urban planners with an instrument that could help them analyse various future development scenarios and take the right decisions going forward. Numéro de notice : A2023-116 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.104337 Date de publication en ligne : 05/12/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104337 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102486
in Sustainable Cities and Society > vol 89 (February 2023) . - n° 104337[article]Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services / Mingyue Xu in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
![]()
[article]
Titre : Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services Type de document : Article/Communication Auteurs : Mingyue Xu, Auteur ; Peng Yue, Auteur ; Fan Yu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 380 - 402 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] appariement de données localisées
[Termes IGN] apprentissage profond
[Termes IGN] autopartage
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] interaction humain-espace
[Termes IGN] modèle de Markov
[Termes IGN] système d'information urbain
[Termes IGN] système multi-agents
[Termes IGN] taxi
[Termes IGN] transmission de données
[Termes IGN] zone d'activité économiqueRésumé : (auteur) The popularity of ride-hailing platforms has significantly improved travel efficiency by providing convenient and personalized transportation services. Designing an effective ride-hailing service generally needs to address two tasks: order matching that assigns orders to available vehicles and proactive vehicle repositioning that deploys idle vehicles to potentially high-demand regions. Recent studies have intensively utilized deep reinforcement learning to solve the two tasks by learning an optimal dispatching strategy. However, most of them generate actions for the two tasks independently, neglecting the interactions between the two tasks and the communications among multiple drivers. To this end, this paper provides an approach based on multi-agent deep reinforcement learning where the two tasks are modeled as a unified Markov decision process, and the colossal state space and competition among drivers are addressed. Additionally, a modifiable agent-specific state representation is proposed to facilitate knowledge transferring and improve computing efficiency. We evaluate our approach on a public taxi order dataset collected in Chengdu, China, where a variable number of simulated vehicles are tested. Experimental results show that our approach outperforms seven existing baselines, reducing passenger rejection rate, driver idle time and improving total driver income. Numéro de notice : A2023-058 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2119477 Date de publication en ligne : 07/09/2022 En ligne : https://doi.org/10.1080/13658816.2022.2119477 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102396
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 380 - 402[article]Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping / Luc Baudoux in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
![]()
[article]
Titre : Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet
, Auteur
Année de publication : 2023 Projets : AI4GEO / Article en page(s) : pp ? Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] apprentissage profond
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte d'utilisation du sol
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] harmonisation des données
[Termes IGN] nomenclature
[Termes IGN] pouvoir de résolution géométriqueRésumé : (auteur) Land-use/land-cover (LULC) maps describe the Earth’s surface with discrete classes at a specific spatial resolution. The chosen classes and resolution highly depend on peculiar uses, making it mandatory to develop methods to adapt these characteristics for a large range of applications. Recently, a convolutional neural network (CNN)-based method was introduced to take into account both spatial and geographical context to translate a LULC map into another one. However, this model only works for two maps: one source and one target. Inspired by natural language translation using multiple-language models, this article explores how to translate one LULC map into several targets with distinct nomenclatures and spatial resolutions. We first propose a new data set based on six open access LULC maps to train our CNN-based encoder-decoder framework. We then apply such a framework to convert each of these six maps into each of the others using our Multi-Landcover Translation network (MLCT-Net). Extensive experiments are conducted at a country scale (namely France). The results reveal that our MLCT-Net outperforms its semantic counterparts and gives on par results with mono-LULC models when evaluated on areas similar to those used for training. Furthermore, it outperforms the mono-LULC models when applied to totally new landscapes. Numéro de notice : A2023-075 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2120996 Date de publication en ligne : 10/10/2022 En ligne : https://doi.org/10.1080/13658816.2022.2120996 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101797
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp ?[article]PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes / Weixiao Gao in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes Type de document : Article/Communication Auteurs : Weixiao Gao, Auteur ; Liangliang Nan, Auteur ; Bas Boom, Auteur ; Hugo Ledoux, Auteur Année de publication : 2023 Article en page(s) : pp 32 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de scène 3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] contour
[Termes IGN] maillage
[Termes IGN] Perceptron multicouche
[Termes IGN] réseau neuronal de graphes
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) We introduce a novel deep learning-based framework to interpret 3D urban scenes represented as textured meshes. Based on the observation that object boundaries typically align with the boundaries of planar regions, our framework achieves semantic segmentation in two steps: planarity-sensible over-segmentation followed by semantic classification. The over-segmentation step generates an initial set of mesh segments that capture the planar and non-planar regions of urban scenes. In the subsequent classification step, we construct a graph that encodes the geometric and photometric features of the segments in its nodes and the multi-scale contextual features in its edges. The final semantic segmentation is obtained by classifying the segments using a graph convolutional network. Experiments and comparisons on two semantic urban mesh benchmarks demonstrate that our approach outperforms the state-of-the-art methods in terms of boundary quality, mean IoU (intersection over union), and generalization ability. We also introduce several new metrics for evaluating mesh over-segmentation methods dedicated to semantic segmentation, and our proposed over-segmentation approach outperforms state-of-the-art methods on all metrics. Our source code is available at https://github.com/WeixiaoGao/PSSNet. Numéro de notice : A2023-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.020 Date de publication en ligne : 02/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102399
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 32 - 44[article]A geometry-aware attention network for semantic segmentation of MLS point clouds / Jie Wan in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
PermalinkHGAT-VCA: Integrating high-order graph attention network with vector cellular automata for urban growth simulation / Xuefeng Guan in Computers, Environment and Urban Systems, vol 99 (January 2023)
PermalinkA hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction / Jiayi Li in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)
PermalinkMTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction / Du Yin in Geoinformatica, vol 27 n° 1 (January 2023)
PermalinkMulti-information PointNet++ fusion method for DEM construction from airborne LiDAR data / Hong Hu in Geocarto international, vol 38 n° 1 ([01/01/2023])
PermalinkRemote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia / Lifan Ji in European journal of remote sensing, vol 56 n° 1 (2023)
PermalinkSensing urban soundscapes from street view imagery / Tianhong Zhao in Computers, Environment and Urban Systems, vol 99 (January 2023)
PermalinkTree height-growth trajectory estimation using uni-temporal UAV laser scanning data and deep learning / Stefano Puliti in Forestry, an international journal of forest research, vol 96 n° 1 (January 2023)
PermalinkA comparative study on deep-learning methods for dense image matching of multi-angle and multi-date remote sensing stereo-images / Hessah Albanwan in Photogrammetric record, vol 37 n° 180 (December 2022)
PermalinkA deep learning framework based on generative adversarial networks and vision transformer for complex wetland classification using limited training samples / Ali Jamali in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
Permalink