Descripteur
Termes IGN > 1-Candidats > inventaire forestier étranger (données)
inventaire forestier étranger (données)
Commentaire :
- Résultats du dénombrement des arbres d'un peuplement forestier, d'une forêt ou de l'ensemble des forêts d'une zone donnée, par essences, classes de dimension et autres caractéristiques. Des mesures complémentaires peuvent être effectuées sur certains arbres pour en connaître les volumes, accroissements et autres caractéristiques. L'inventaire est complet (pied à pied) ou statistique (par échantillonnage) selon que sont dénombrés tous les arbres ou seulement ceux présents sur des placettes échantillons implantées dans les peuplements à inventorier. (Vocab. forestier / Bastien)
Voir aussi |
Documents disponibles dans cette catégorie (212)



Etendre la recherche sur niveau(x) vers le bas
Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions / Johannes Breidenbach in Annals of Forest Science [en ligne], vol 79 n° 1 (2022)
![]()
[article]
Titre : Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions Type de document : Article/Communication Auteurs : Johannes Breidenbach, Auteur ; David Ellison, Auteur ; Hans Petersson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] changement climatique
[Termes IGN] données spatiotemporelles
[Termes IGN] Finlande
[Termes IGN] image à haute résolution
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] précision de l'estimation
[Termes IGN] récolte de bois
[Termes IGN] Suède
[Termes IGN] surface forestière
[Termes IGN] Union EuropéenneRésumé : (Auteur) Using satellite-based maps, Ceccherini et al. (Nature 583:72-77, 2020) report abruptly increasing harvested area estimates in several EU countries beginning in 2015. Using more than 120,000 National Forest Inventory observations to analyze the satellite-based map, we show that it is not harvested area but the map’s ability to detect harvested areas that abruptly increases after 2015 in Finland and Sweden. Numéro de notice : A2022-068 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01120-4 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.1186/s13595-022-01120-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100013
in Annals of Forest Science [en ligne] > vol 79 n° 1 (2022) . - n° 2[article]Offering the appetite for the monitoring of European forests a diversified diet / Jean-Daniel Bontemps in Annals of Forest Science [en ligne], vol 79 n° 1 (2022)
![]()
[article]
Titre : Offering the appetite for the monitoring of European forests a diversified diet Type de document : Article/Communication Auteurs : Jean-Daniel Bontemps , Auteur ; Olivier Bouriaud
, Auteur ; Cédric Vega
, Auteur ; Laura Bouriaud
, Auteur
Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : n° 19 Note générale : bibliographie
NB article d'opinionLangues : Anglais (eng) Descripteur : [Termes IGN] Europe (géographie politique)
[Termes IGN] intégration
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] politique publique
[Termes IGN] ressources forestières
[Termes IGN] santé des forêts
[Termes IGN] surveillance forestière
[Termes IGN] Union Européenne
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Forest monitoring in Europe is turning matter of renewed political concern, and a possible role for ICP Forests health monitoring has been suggested to meet this goal (Ann For Sci 78:94, 2021). Multipurpose national forest inventory (NFI) surveys yet offer a sampling effort by two orders of magnitude greater than ICP level 1, have accomplished substantial methodological and harmonization progresses in the recent years, and therefore form a decisive contributor to future European forest monitoring incentives. Possible paths for the future development of a pan-European, comprehensive and more accurate monitoring are designed that stress a crucial need to build on the assets of the existing forest monitoring programs and favor their cooperation, in order to limit the co-existence of distinct forest monitoring processes. Numéro de notice : A2022-320 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01139-7 Date de publication en ligne : 11/04/2022 En ligne : http://dx.doi.org/10.1186/s13595-022-01139-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100432
in Annals of Forest Science [en ligne] > vol 79 n° 1 (2022) . - n° 19[article]Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics / Jakob Wernicke in Remote sensing of environment, vol 279 (15 September 2022)
![]()
[article]
Titre : Forest canopy stratification based on fused, imbalanced and collinear LiDAR and Sentinel-2 metrics Type de document : Article/Communication Auteurs : Jakob Wernicke, Auteur ; Christian Torsten Seltmann, Auteur ; Ralf Wenzel, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113134 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Allemagne
[Termes IGN] analyse comparative
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] semis de points
[Termes IGN] stratificationRésumé : (auteur) Knowledge about the forest canopy stratification is of essential importance for forest management and planning. Collecting structural information (e.g. natural regeneration) still depends on cost and labour intensive forest inventories with a coarse spatio-temporal resolution. Remote sensing partly overcomes these limitations and particularly active sensors of type light detection and ranging (LiDAR) have proven their great potential of separating forest strata. The applicability of LiDAR metrics for the differentiation of the spruce dominated forest strata in Central Germany has not been tested yet. Additionally, studying the potential of Sentinel-2 metrics for the classification of forest strata is lacking too. In this study, we investigated the capabilities of six different classification approaches for the differentiation of five forest strata that are typical for the study region. Reference data were derived from forest inventory measurements surveyed on a dense 200 × 200 m grid. The six classification approaches were trained with fused and un-fused LiDAR and Sentinel-2 inferred metrics. The classification results were compared using the overall mean accuracy, sensitivity and specificity via receivers operating characteristics of multi-class problems. We were interested in the classification abilities of Sentinel-2 metrics due to the obvious advantages of Sentinel-2 based metrics (free of charge, high spatio-temporal coverage). We assumed that the canopy structure determines the reflection on stand level and thus might facilitate the classification of different canopy strata. Beforehand, it was important to examine the influence of distinctly imbalanced and collinear reference data on the classification results. We found that the Random Forest classifier most accurately separated the five forest strata with a mean overall accuracy of 83.3% (Kappa = 76.2%). These values were achieved from balanced training data and the classification capability was confirmed by classification results from an independent test data set. Fused predictors of active (LiDAR) and passive (Sentinel-2) remote sensing revealed no substantial improvement in the classification accuracy due to the dominant role of LiDAR metrics. Herein, we identified that especially the height variability, top height, portion of LiDAR-returns between 2 m and 10 m and the standard deviation of the return number between the 25th and 50th height percentile, predominately contributed to the classification accuracy. Classification results purely based on Sentinel-2 metrics revealed a rather small overall mean accuracy of 54.7%. The metrics (e.g. median, variance, entropy) were derived from Sentinel-2 indices, covering the visible and near to short infrared spectrum. Variable importance computations unraveled a detectable but minor contribution of MSI, TCG, NDVI to the classification result. Finally, our data driven observations illustrated serious drawbacks associated to data imbalance, collinearity and autocorrelation and presented practical guidance to cope with these issues. Numéro de notice : A2022-510 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113134 Date de publication en ligne : 28/06/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113134 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101047
in Remote sensing of environment > vol 279 (15 September 2022) . - n° 113134[article]Climatic sensitivities derived from tree rings improve predictions of the forest vegetation simulator growth and yield model / Courtney L. Giebink in Forest ecology and management, vol 517 (1 August 2022)
![]()
[article]
Titre : Climatic sensitivities derived from tree rings improve predictions of the forest vegetation simulator growth and yield model Type de document : Article/Communication Auteurs : Courtney L. Giebink, Auteur ; R. Justin DeRose, Auteur ; Mark Castle, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120256 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] cerne
[Termes IGN] croissance des arbres
[Termes IGN] gestion forestière
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] Picea (genre)
[Termes IGN] Pinus ponderosa
[Termes IGN] Pseudotsuga menziesii
[Termes IGN] puits de carbone
[Termes IGN] rendement
[Termes IGN] Utah (Etas-Unis)
[Termes IGN] variation saisonnière
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Forest management has the potential to contribute to the removal of greenhouse gasses from the atmosphere via carbon sequestration and storage. To identify management actions that will maximize carbon removal and storage over the long term, models are needed that accurately and realistically represent forest responses to changing climate. The most widely used growth and yield model in the United States (U.S.), the Forest Vegetation Simulator (FVS), which also forms the basis for several forest carbon calculators, does not currently include the direct effect of climate variation on tree growth. We incorporated the effects of climate on tree diameter growth by combining tree-ring data with forest inventory data to parameterize a suite of alternative models characterizing the growth of three dominant tree species in the arid and moisture-limited state of Utah. These species, Pinus ponderosa Dougl. ex Laws, Pseudotsuga menziesii var. glauca Mayr (Franco), and Picea engelmannii Parry ex Engelm., encompass the full elevational range of montane forest types. The alternative models we considered differed progressively from the current FVS large-tree diameter growth model, first by changing to an annual time step, then by adding interannual climate effects, followed by model simplification (removal of predictors), and finally, complexification, including effects of spatial variation in climate and two-way interactions between predictors. We validated diameter growth predictions from these models with independent observations, and evaluated model performance in terms of accuracy, precision, and bias. We then compared predictions of future growth made by the existing large-tree diameter growth model used in FVS, i.e., without climate effects, to those of our updated models, including those with climate effects. We found that simpler models of tree growth outperform the current FVS model, and that the incorporation of climate effects improves model performance for two out of three species, in which growth is currently overpredicted by FVS. Diameter growth projected with improved, climate-sensitive models is less than the future tree growth projected by the current climate-insensitive FVS model. Tree rings can be used to identify and incorporate drivers of growth variation into a stand-level growth and yield model, giving more accurate predictions of the carbon uptake potential of forests under climate change. Numéro de notice : A2022-390 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120256 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120256 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100681
in Forest ecology and management > vol 517 (1 August 2022) . - n° 120256[article]Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure / Alejandro Rodríguez-Vivancos in European Journal of Forest Research, vol 141 n° 3 (June 2022)
![]()
[article]
Titre : Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure Type de document : Article/Communication Auteurs : Alejandro Rodríguez-Vivancos, Auteur ; José Antonio Manzanera, Auteur ; Susana Martín-Fernández, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 447 - 465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de variance
[Termes IGN] Bootstrap (statistique)
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur d'échantillon
[Termes IGN] Espagne
[Termes IGN] forêt inéquienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pinus sylvestris
[Termes IGN] régression linéaire
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] structure-from-motionRésumé : (auteur) Airborne Laser Scanning (ALS) is widely extended in forest evaluation, although photogrammetry-based Structure from Motion (SfM) has recently emerged as a more affordable alternative. Return cloud metrics and their normalization using different typologies of Digital Terrain Models (DTM), either derived from SfM or from private or free access ALS, were evaluated. In addition, the influence of the return density (0.5–6.5 returns m-2) and the sampling intensity (0.3–3.4%) on the estimation of the most common stand structure variables were also analysed. The objective of this research is to gather all these questions in the same document, so that they serve as support for the planning of forest management. This study analyses the variables collected from 60 regularly distributed circular plots (r = 18 m) in a 150-ha of uneven-aged Scots pine stand. Results indicated that both ALS and SfM can be equally used to reduce the sampling error in the field inventories, but they showed differences when estimating the stand structure variables. ALS produced significantly better estimations than the SfM metrics for all the variables of interest, as well as the ALS-based normalization. However, the SfM point cloud produced better estimations when it was normalized with its own DTM, except for the dominant height. The return density did not have significant influence on the estimation of the stand structure variables in the range studied, while higher sampling intensities decreased the estimation errors. Nevertheless, these were stabilized at certain intensities depending on the variance of the stand structure variable. Numéro de notice : A2022-417 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s10342-022-01447-7 Date de publication en ligne : 12/04/2022 En ligne : https://doi.org/10.1007/s10342-022-01447-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100780
in European Journal of Forest Research > vol 141 n° 3 (June 2022) . - pp 447 - 465[article]Uncertainty of biomass stocks in Spanish forests: a comprehensive comparison of allometric equations / Aitor Ameztegui in European Journal of Forest Research, vol 141 n° 3 (June 2022)
PermalinkComparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data / Andras Balazs in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
PermalinkEstimating forest attributes in airborne laser scanning based inventory using calibrated predictions from external models / Ana de Lera Garrido in Silva fennica, vol 56 n° 2 (April 2022)
PermalinkMapping forest site quality at national level / Ana Aguirre in Forest ecology and management, vol 508 (15 March 2022)
PermalinkAdding tree rings to North America's national forest inventories: An essential tool to guide drawdown of atmospheric CO2 / Margaret E.K. Evans in BioScience, vol 72 n° 3 (March 2022)
PermalinkTowards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD) / Langning Huo in Remote sensing of environment, vol 270 (March 2022)
PermalinkUnexpected negative effect of available water capacity detected on recent conifer forest growth trends across wide environmental gradients / Clémentine Ols in Ecosystems, vol 25 n° 2 (March 2022)
PermalinkCompetition and climate influence in the basal area increment models for Mediterranean mixed forests / Diego Rodríguez de Prado in Forest ecology and management, vol 506 (15 February 2022)
PermalinkAnalysis of spatio-temporal changes in forest biomass in China / Weiyi Xu in Journal of Forestry Research, vol 33 n° 1 (February 2022)
PermalinkGrowing stock monitoring by European National Forest Inventories: Historical origins, current methods and harmonisation / Thomas Gschwantner in Forest ecology and management, vol 505 (1 February 2022)
Permalink