Descripteur
Documents disponibles dans cette catégorie (51)



Etendre la recherche sur niveau(x) vers le bas
Vers une optimisation de la diffusion de l’information dans une ville intelligente / Malika Grim-Yefsah (2023)
![]()
Titre : Vers une optimisation de la diffusion de l’information dans une ville intelligente Type de document : Article/Communication Auteurs : Malika Grim-Yefsah , Auteur ; Mohamed Chachoua
, Auteur ; Léa Jeantet, Auteur
Editeur : La Rochelle : Université de La Rochelle Année de publication : 2023 Conférence : INFORSID 2023, 41e congrès Informatique des organisations et systèmes d'information et de décision 30/05/2023 02/06/2023 La Rochelle France OA Proceedings Importance : pp 79 - 84 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] diffusion de l'information
[Termes IGN] temps réel
[Termes IGN] ville intelligente
[Termes IGN] zone urbaineIndex. décimale : 37.20 Analyse spatiale et ses outils Résumé : (auteur) Les panneaux d'affichage numérique introduisent Internet dans les espaces publics et simplifient la diffusion de l'information dans les environnements urbains. Avec l’avènement de la ville intelligente, en plus de la diffusion publicitaire, ces panneaux offrent des opportunités pour la gestion de l'information en temps réel et pour développer des applications innovantes. Cet article explore la problématique du positionnement de ces panneaux dans l'espace urbain et propose une approche basée sur les représentations spatiales pour déterminer les points d'installation optimaux, leur permettant d’assurer de nouvelles fonctions, selon le lieu. Numéro de notice : C2023-014 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103327 Documents numériques
peut être téléchargé
Vers une optimisation - pdf éditeurAdobe Acrobat PDFA GIS and hybrid simulation aided environmental impact assessment of city-scale demolition waste management / Zhikun Ding in Sustainable Cities and Society, vol 86 (November 2022)
![]()
[article]
Titre : A GIS and hybrid simulation aided environmental impact assessment of city-scale demolition waste management Type de document : Article/Communication Auteurs : Zhikun Ding, Auteur ; Xinping Wen, Auteur ; Xiaoyan Cao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aide à la décision
[Termes IGN] déchet
[Termes IGN] impact sur l'environnement
[Termes IGN] modèle empirique
[Termes IGN] modèle orienté agent
[Termes IGN] planification urbaine
[Termes IGN] Shenzhen
[Termes IGN] simulation dynamique
[Termes IGN] système d'information géographique
[Termes IGN] ville intelligenteRésumé : (auteur) A considerable amount of demolition waste (DW) generated by urbanization and urban renewal has brought significant threats to the environment. However, there is a serious lack of environmental impact assessment towards city-scale demolition waste management (DWM), particularly from the systematical and dynamical perspective. Traditionally the assessment has been conducted from a static perspective. The purpose of this paper is to comprehensively evaluate the environmental impact of city-scale DWM from a complex system perspective. A novel evaluation model was developed by innovatively integrating the geographic information system (GIS) and system hybrid simulation consisting of system dynamics (SD), agent-based modeling (ABM) and discrete event simulation (DES). The proposed model was verified. Based on an empirical analysis of Shenzhen, China, it is found that the environmental impact of city-scale DWM is mainly concentrated in the central and northeastern regions of Shenzhen, demonstrating spatial heterogeneity and regional aggregation. Furthermore, the results reveal that the model is robust and effective to assess environmental impact from four aspects, i.e., land occupation, water pollution, air pollution and energy consumption. The findings contribute to a better understanding of the status quo of city-scale DWM and accompanying environmental impacts, and coordinating various district governments to formulate effective DWM policies. Numéro de notice : A2022-817 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104108 Date de publication en ligne : 06/08/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104108 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101983
in Sustainable Cities and Society > vol 86 (November 2022) . - n° 104108[article]Machine learning and natural language processing of social media data for event detection in smart cities / Andrei Hodorog in Sustainable Cities and Society, vol 85 (October 2022)
![]()
[article]
Titre : Machine learning and natural language processing of social media data for event detection in smart cities Type de document : Article/Communication Auteurs : Andrei Hodorog, Auteur ; Ioan Petri, Auteur ; yacine Rezgui, Auteur Année de publication : 2022 Article en page(s) : n° 104026 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage automatique
[Termes IGN] classification bayesienne
[Termes IGN] détection d'événement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] outil d'aide à la décision
[Termes IGN] régression multiple
[Termes IGN] taxinomie
[Termes IGN] traitement du langage naturel
[Termes IGN] ville intelligenteRésumé : (auteur) Social media data analysis in a smart city context can represent an efficacious instrument to inform decision making. The manuscript strives to leverage the power of Natural Language Processing (NLP) techniques applied to Twitter messages using supervised learning to achieve real-time automated event detection in smart cities. A semantic-based taxonomy of risks is devised to discover and analyse associated events from data streams, with a view to: (i) read and process, in real-time, published texts (ii) classify each text into one representative real-world category (iii) assign a citizen satisfaction value to each event. To select the language processing models striking the best balance between accuracy and processing speed, we conducted a pre-emptive evaluation, comparing several baseline language models formerly employed by researchers for event classification. A heuristic analysis of several smart cities and community initiatives was conducted, with a view to define real-world scenarios as basis for determining correlations between two or more co-occurring event types and their associated levels of citizen satisfaction, while further considering environmental factors. Based on Multiple Regression Analysis (MRA), we established the relationships between scenario variables, obtaining a variance of 60%–90% between the dependent and independent variables. The selected combination of supervised NLP techniques leverages an accuracy of 88.5%. We found that all regression models had at least one variable below the 0.05 threshold of the , therefore at least one statistically significant independent variable. These findings ultimately illustrate how citizens, taking the role of active social sensors, can yield vital data that authorities can use to make educated decisions and sustainably construct smarter cities. Numéro de notice : A2022-764 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104026 Date de publication en ligne : 02/07/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101785
in Sustainable Cities and Society > vol 85 (October 2022) . - n° 104026[article]Deep learning–based monitoring sustainable decision support system for energy building to smart cities with remote sensing techniques / Wang Yue in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 9 (September 2022)
![]()
[article]
Titre : Deep learning–based monitoring sustainable decision support system for energy building to smart cities with remote sensing techniques Type de document : Article/Communication Auteurs : Wang Yue, Auteur ; Changgang Yu, Auteur ; A. Antonidoss, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 593 - 601 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] capteur (télédétection)
[Termes IGN] économie d'énergie
[Termes IGN] internet des objets
[Termes IGN] performance énergétique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'aide à la décision
[Termes IGN] ville durable
[Termes IGN] ville intelligenteRésumé : (auteur) In modern society, energy conservation is an important consideration for sustainability. The availability of energy-efficient infrastructures and utilities depend on the sustainability of smart cities. The big streaming data generated and collected by smart building devices and systems contain useful information that needs to be used to make timely action and better decisions. The ultimate objective of these procedures is to enhance the city's sustainability and livability. The replacement of decades-old infrastructures, such as underground wiring, steam pipes, transportation tunnels, and high-speed Internet installation, is already a major problem for major urban regions. There are still certain regions in big cities where broadband wireless service is not available. The decision support system is recently acquiring increasing attention in the smart city context. In this article, a deep learning–based sustainable decision support system (DLSDSS) has been proposed for energy building in smart cities. This study proposes the integration of the Internet of Things into smart buildings for energy management, utilizing deep learning methods for sensor information decision making. Building a socially advanced environment aims to enhance city services and urban administration for residents in smart cities using remote sensing techniques. The proposed deep learning methods classify buildings based on energy efficiency. Data gathered from the sensor network to plan smart cities' development include a deep learning algorithm's structural assembly of data. The deep learning algorithm provides decision makers with a model for the big data stream. The numerical results show that the proposed method reduces energy consumption and enhances sensor data accuracy by 97.67% with better decision making in planning smart infrastructures and services. The experimental outcome of the DLSDSS enhances accuracy (97.67%), time complexity (98.7%), data distribution rate (97.1%), energy consumption rate (98.2%), load shedding ratio (95.8%), and energy efficiency (95.4%). Numéro de notice : A2022-812 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00010R2 Date de publication en ligne : 01/09/2022 En ligne : https://doi.org/10.14358/PERS.22-00010R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101972
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 9 (September 2022) . - pp 593 - 601[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022091 SL Revue Centre de documentation Revues en salle Disponible Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration / Haishan Xia in Sustainable Cities and Society, vol 84 (September 2022)
![]()
[article]
Titre : Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration Type de document : Article/Communication Auteurs : Haishan Xia, Auteur ; Zishuo Liu, Auteur ; Maria Efremochkina, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104009 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] bibliométrie
[Termes IGN] CityGML
[Termes IGN] format Industry foudation classes IFC
[Termes IGN] intégration de données
[Termes IGN] jumeau numérique
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] ontologie
[Termes IGN] planification urbaine
[Termes IGN] système d'information géographique
[Termes IGN] ville durable
[Termes IGN] ville intelligenteRésumé : (auteur) Geographic information system (GIS) data provide geospatial data on cities and spatial analysis functions that are essential for urban design. Building information modeling (BIM) includes a digital entity of construction, a passive presentation of micro-digital information on real entities, and an active application of models in the entire life cycle realization of the architecture, engineering, and construction industries. A combination of these technologies could provide a core technology for the urban digital twin to support sustainable smart city design. Through an insightful literature review, this paper summarizes the different disciplinary classifications of GIS and BIM functional integration, distills the value of data, and discusses the ontology-based data integration approach that GIS and BIM should take in the future to conduct research on integration applications in smart cities. To verify this view, keyword analysis, co-country analysis, and co-citation and coupling analyses are conducted using CiteSpace. GIS and BIM integration has attracted much attention. However, a professional disconnect and fragmented composition pose challenges in the field of GIS and BIM integration. Future research should focus on smart city planning, updating, management; ontology-based GIS and BIM data integration platform; and operation; and the collaborative management of urban rail transportation engineering. Numéro de notice : A2022-543 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104009 Date de publication en ligne : 18/06/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104009 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101118
in Sustainable Cities and Society > vol 84 (September 2022) . - n° 104009[article]Smart city data science: Towards data-driven smart cities with open research issues / Iqbal H. Sarker in Internet of Things, vol 19 (August 2022)
PermalinkDeveloping a data-fusing method for mapping fine-scale urban three-dimensional building structure / Xinxin Wu in Sustainable Cities and Society, vol 80 (May 2022)
PermalinkExploring the association between street built environment and street vitality using deep learning methods / Yunqin Li in Sustainable Cities and Society, vol 79 (April 2022)
PermalinkEmerging technologies for smart cities’ transportation: Geo-information, data analytics and machine learning approaches / Li-Minn Ang in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
PermalinkPermalinkApport de l’intelligence artificielle au domaine des villes intelligentes : application à l’assistance des déplacements des personnes à mobilité réduite / Nathan Aky (2022)
PermalinkA hierarchical model for semantic trajectories and event extraction in indoor and outdoor spaces / Hassan Noureddine (2022)
PermalinkPermalinkTowards synthetic sensing for smart cities : a machine/deep learning-based approach / Faraz Malik Awan (2022)
PermalinkAnalytics of location-based big data for smart cities: Opportunities, challenges, and future directions / Haosheng Huang in Computers, Environment and Urban Systems, vol 90 (November 2021)
Permalink