Descripteur
Termes IGN > mathématiques > analyse numérique > optimisation (mathématiques) > optimisation par essaim de particules
optimisation par essaim de particulesVoir aussi |
Documents disponibles dans cette catégorie (14)



Etendre la recherche sur niveau(x) vers le bas
A general model for creating robust choropleth maps / Wangshu Mu in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : A general model for creating robust choropleth maps Type de document : Article/Communication Auteurs : Wangshu Mu, Auteur ; Daoqin Tong, Auteur Année de publication : 2022 Article en page(s) : n° 101850 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] carte choroplèthe
[Termes IGN] incertitude des données
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] méthode robuste
[Termes IGN] optimisation par essaim de particules
[Termes IGN] programmation dynamiqueRésumé : (auteur) Choropleth maps visualize areal geographical data by grouping data into a few map classes and assigning different colors, shades, or patterns. Recent studies show that data uncertainty, commonly observed in real-life applications, should also be accounted for when determining the best classification scheme. Due to data uncertainty, a few studies note that map units might be placed in a wrong class, and the concept of map robustness has been introduced to minimize such misplacement. Recently, an algorithm has been developed to integrate robustness into the design of the optimal map classification scheme. However, the existing algorithm has two limitations: first, it is only suitable for certain robustness metrics. Second, when identifying the optimal class breaks, the existing algorithm requires predefined candidate class break values, which might lead to sub-optimal solutions. This paper resolves these issues by proposing a new model, namely, the Continuous Robust Map Classification Problem (CRMCP), and the associated solution approach. The CRMCP allows mapmakers to customize robustness metrics according to their data and applications. In addition, a particle swarm optimization algorithm is developed to solve the CRMCP. The model and algorithm are tested using American Community Survey data. Test results suggest that the new approach can find better solutions than the existing algorithm. The study improves the usability of choropleth maps when uncertain geographical attributes are involved and allows spatial analysts and decision-makers to incorporate robustness into the mapmaking process more flexibly. Numéro de notice : A2022-514 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101850 Date de publication en ligne : 28/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101850 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101055
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101850[article]Deformation analysis: the modified GREDOD method / Mehmed Batilović in Geodetski vestnik, vol 66 n° 1 (March 2022)
![]()
[article]
Titre : Deformation analysis: the modified GREDOD method Type de document : Article/Communication Auteurs : Mehmed Batilović, Auteur ; Željko Kanović, Auteur ; Zoran Sušić, Auteur ; Marko Z. Marković, Auteur ; Vladimir Bulatović, Auteur Année de publication : 2022 Article en page(s) : pp 60 - 75 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] algorithme génétique
[Termes IGN] déformation géométrique
[Termes IGN] méthode robuste
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) In this paper, a modified Generalised Robust Estimation of Deformation from Observation Differences (GREDOD) method is presented, based on the application of genetic algorithm (GA) and generalised particle swarm optimisation (GPSO) algorithm in solving the optimisation problem of this method, which is, in essence, a problem of determining the optimal datum of the displacement vector. The procedure of deformation analysis using this modification of the GREDOD method is demonstrated in the example of the two-dimensional geodetic network presented in numerous research and in which all observations and displacements were simulated. Using both algorithms, GA and GPSO, almost identical results of deformation analysis were obtained, except datum solutions of the displacement vector, which are completely different. These results differ only slightly from the results obtained using the methods of Hannover, Karlsruhe, Delft, Fredericton, München, Caspary, and the classical robust method. Numéro de notice : A2022-453 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.15292/geodetski-vestnik.2022.01.60-75 En ligne : https://dx.doi.org/10.15292/geodetski-vestnik.2022.01.60-75 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100984
in Geodetski vestnik > vol 66 n° 1 (March 2022) . - pp 60 - 75[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 139-2022011 SL Revue Centre de documentation Revues en salle Disponible Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images / Alireza Hamedianfar in Geocarto international, vol 37 n° 3 ([01/03/2022])
![]()
[article]
Titre : Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images Type de document : Article/Communication Auteurs : Alireza Hamedianfar, Auteur ; Mohamed Barakat A. Gibril, Auteur ; Mohammadjavad Hosseinpoor, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 773 - 791 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte d'occupation du sol
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image à très haute résolution
[Termes IGN] image Worldview
[Termes IGN] itération
[Termes IGN] optimisation (mathématiques)
[Termes IGN] optimisation par essaim de particules
[Termes IGN] réseau neuronal artificiel
[Termes IGN] segmentation d'image
[Termes IGN] zone urbaineRésumé : (auteur) Geographic object-based image analysis (GEOBIA) has emerged as an effective and evolving paradigm for analyzing very high resolution (VHR) images as it demonstrates preeminence over the traditional pixel-wise methods and enables the utilization of diverse spectral, geometrical, and textural information to for image classification. Among feature selection (FS) methods, metaheuristic FS techniques have recently demonstrated effective performance in the dimensionality reduction of GEOBIA features. In this study, an artificial neural network (ANN) was integrated with particle swarm optimization (PSO) to enhance the learning process and more effectively determine the most significant features and their importance using WorldView-3 (WV-3) satellite data. First, multi-resolution image segmentation parameters were tuned using Taguchi optimization technique and unsupervised segmentation quality measure. Second, the proposed ANN–PSO was compared with PSO under 100 iterations. The ANN–PSO integration achieved lower root mean square error (RMSE) in all the iterations. Third, state-of-the-art extreme gradient boosting (Xgboost) image classifier was used to derive the land use/land cover (LULC) map of the first study area and assess the transferability of the selected features on the second and third regions. The Xgboost classifier obtained 91.68%, 89.54%, and 89.33% overall accuracies for the first, second, and third sites, respectively. ANN contributed to an intelligent approach for identifying which features are more likely to be relevant and discriminate the land cover types. The proposed integrated FS is a promising approach and an efficient tool for determining significant features and enhancing the detection of urban LULC classes from WV-3 data. Numéro de notice : A2022-344 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1737974 Date de publication en ligne : 12/03/2020 En ligne : https://doi.org/10.1080/10106049.2020.1737974 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100525
in Geocarto international > vol 37 n° 3 [01/03/2022] . - pp 773 - 791[article]Flood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
![]()
[article]
Titre : Flood susceptibility mapping using meta-heuristic algorithms Type de document : Article/Communication Auteurs : Alireza Arabameri, Auteur ; Amir Seyed Danesh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 949 - 974 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme génétique
[Termes IGN] base de données localisées
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Google Earth
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] optimisation par essaim de particules
[Termes IGN] SAGA GIS
[Termes IGN] séparateur à vaste marge
[Termes IGN] traitement de données localisées
[Termes IGN] vulnérabilité
[Termes IGN] zone à risqueRésumé : (auteur) Flood is a common global natural hazard, and detailed flood susceptibility maps for specific watersheds are important for flood management measures. We compute the flood susceptibility map for the Kaiser watershed in Iran using machine learning models such as support vector machine (SVM), Particle swarm optimization (PSO), and genetic algorithm (GA) along with ensembles (PSO-GA and SVM-GA). The application of such machine learning models in flood susceptibility assessment and mapping is analyzed, and future research suggestions are presented. The model of flood susceptibility model was constructed based on fifteen causatives: slope, slope aspect, elevation, plan curvature, land use, and land cover, normalize differences vegetation index (NDVI), convergence index (CI), topographical wetness index (TWI), topographic positioning Index (TPI), drainage density (DD), distance to stream, terrain ruggedness index (TRI), terrain surface texture (TST), geology and stream power index (SPI) and flood inventory data which later is divided by 70% for training the model and 30% for validated the model. The model output was evaluated through sensitivity, specificity, accuracy, precision, Cohen Kappa, F-score, and receiver operating curve (ROC). The evaluation of flood susceptibility mapping through the receiver operating curve method along with flood density shows robust results from support vector machine (0.839), particle swarm optimization (0.851), genetic algorithm (0.874), SVM-GA (0.886), and PSO-GA (0.902). Compared have done with some methods commonly used in this susceptibility assessment. A high-quality, informative database is essential for the classification of flood types in flood susceptibility mapping that is very important and helpful to improve the model performances. The performance of the ensemble PSO-GA is better than that of the machine learning model, yielding a high degree of accuracy (AUC-0.902%). Our approach, therefore, provides a novel method for flood susceptibility studies in other watersheds. Numéro de notice : A2022-300 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/19475705.2022.2060138 Date de publication en ligne : 11/04/2022 En ligne : https://doi.org/10.1080/19475705.2022.2060138 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100383
in Geomatics, Natural Hazards and Risk > vol 13 n° 1 (2022) . - pp 949 - 974[article]Particle swarm optimization based water index (PSOWI) for mapping the water extents from satellite images / Mohammad Hossein Gamshadzaei in Geocarto international, vol 36 n° 20 ([01/12/2021])
![]()
[article]
Titre : Particle swarm optimization based water index (PSOWI) for mapping the water extents from satellite images Type de document : Article/Communication Auteurs : Mohammad Hossein Gamshadzaei, Auteur ; Majid Rahimzadegan, Auteur Année de publication : 2021 Article en page(s) : pp 2264 - 2278 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multibande
[Termes IGN] analyse spectrale
[Termes IGN] Arménie
[Termes IGN] bande infrarouge
[Termes IGN] cartographie thématique
[Termes IGN] détection d'objet
[Termes IGN] eau de surface
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] Google Earth
[Termes IGN] image à haute résolution
[Termes IGN] image satellite
[Termes IGN] indice d'humidité
[Termes IGN] Iran
[Termes IGN] occupation du sol
[Termes IGN] optimisation par essaim de particules
[Termes IGN] polygoneRésumé : (auteur) Various spectral indices have been introduced to detect water extent from satellite images with different performances in various regions. The aim of this study is to provide an efficient index using particle swarm optimization (PSO) algorithm to detect water spread areas from satellite images with similar performance in different regions. This index is introduced for images containing water absorption bands from visible to middle infrared wavelengths. Eleven images were prepared from different satellites and water bodies with various environmental conditions. In addition, 40 pixels from water and 40 pixels from non-water regions were selected as training data for PSO algorithm. Results were evaluated using digitized polygons of water bodies on high-resolution images of Google Earth. The best results in PSO-based water index (PSOWI) were obtained by the combination of two bands (red and middle infrared). PSOWI represented proper performance in the selected various land covers and satellite images. Numéro de notice : A2021-831 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1700554 Date de publication en ligne : 12/12/2019 En ligne : https://doi.org/10.1080/10106049.2019.1700554 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99004
in Geocarto international > vol 36 n° 20 [01/12/2021] . - pp 2264 - 2278[article]Endmember bundle extraction based on multiobjective optimization / Rong Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
PermalinkMetaheuristics for the positioning of 3D objects based on image analysis of complementary 2D photographs / Arnaud Flori in Machine Vision and Applications, vol 32 n° 5 (September 2021)
PermalinkIncreasing efficiency of the robust deformation analysis methods using genetic algorithm and generalised particle swarm optimisation / Mehmed Batilović in Survey review, Vol 53 n° 378 (May 2021)
PermalinkOptimization of multi-ecosystem model ensembles to simulate vegetation growth at the global scale / Linling Tang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkLocal fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
PermalinkObject-based automatic multi-index built-up areas extraction method for WorldView-2 satellite imagery / Zhenhui Sun in Geocarto international, Vol 35 n° 8 ([01/06/2020])
PermalinkGeneration of digital terrain model for forest areas using a new particle swarm optimization on LiDAR data / Behnaz Bigdeli in Survey review, vol 52 n° 371 (March 2020)
PermalinkSimulating urban growth processes by integrating cellular automata model and artificial optimization in Binhai New Area of Tianjin, China / Fengmei Yao in Geocarto international, vol 31 n° 5 - 6 (May - June 2016)
PermalinkRoad vectorisation from high-resolution imagery based on dynamic clustering using particle swarm optimisation / Fateme Ameri in Photogrammetric record, vol 30 n° 152 (December 2015 - February 2016)
Permalink