Descripteur
Termes IGN > mathématiques > analyse numérique > optimisation (mathématiques) > optimisation par essaim de particules
optimisation par essaim de particulesVoir aussi |
Documents disponibles dans cette catégorie (21)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Estimating mangrove above-ground biomass at Maowei Sea, Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data / Zhuomei Huang in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Estimating mangrove above-ground biomass at Maowei Sea, Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data Type de document : Article/Communication Auteurs : Zhuomei Huang, Auteur ; Yichao Tian, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] Chine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] mangrove
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) Blue carbon ecosystems such as mangroves are natural barriers to resisting and alleviating the impact of storm surges and extreme catastrophic weather. Accurate and efficient determination of the aboveground biomass of mangroves is of great importance for the protection and restoration of blue carbon ecosystems and their response to climate change. This study proposes a light gradient boosting model (LGBM) based on particle swarm optimization (PSO) algorithm for feature selection. We constructed and verified the proposed model using 227 quadrat datasets from a field survey and Sentinel-1 and Sentinel-2 data. The determination coefficient (R2) and root-mean-square error (RMSE) were used to evaluate the performance of the model. Compared with random forest(RF), K-nearest neighbourhood regression(KNNR), extreme gradient boosting(XGBR), LGBM, and other machine learning algorithms, the LGBM-PSO model achieves better results (R2 = 0.7807, RMSE = 24.6864 Mg·ha−1), The predicted range of mangrove biomass is 4.623–206.975 Mg·ha−1. Therefore, the use of multisource remote sensing data combined with the LGBM-PSO model can provide better prediction results of aboveground biomass of mangroves, thereby providing a new method for estimating the aboveground biomass of large-scale mangroves. Numéro de notice : A2022-621 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2102226 Date de publication en ligne : 22/07/2022 En ligne : https://doi.org/10.1080/10106049.2022.2102226 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101356
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]Automatic registration of point cloud and panoramic images in urban scenes based on pole matching / Yuan Wang in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
[article]
Titre : Automatic registration of point cloud and panoramic images in urban scenes based on pole matching Type de document : Article/Communication Auteurs : Yuan Wang, Auteur ; Yuhao Li, Auteur ; Yiping Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103083 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de formes
[Termes IGN] chevauchement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] image virtuelle
[Termes IGN] optimisation par essaim de particules
[Termes IGN] points registration
[Termes IGN] recalage d'image
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobile
[Termes IGN] zone tamponRésumé : (auteur) Given the initial calibration of multiple sensors, the fine registration between Mobile Laser Scanning (MLS) point clouds and panoramic images is still challenging due to the unforeseen movement and temporal misalignment while collecting. To tackle this issue, we proposed a novel automatic method to register the panoramic images and MLS point clouds based on the matching of pole objects. Firstly, 2D pole instances in the panoramic images are extracted by a semantic segmentation network and then optimized. Secondly, every corresponding frustum point cloud of each pole instance is obtained by a shape-adaptive buffer region in the panoramic image, and the 3D pole object is extracted via a combination of slicing, clustering, and connected domain analysis, then all 3D pole objects are fused. Finally, 2D and 3D pole objects are re-projected onto virtual images respectively, and then fine 2D-3D correspondences are collected through maximizing pole overlapping area by Particle Swarm Optimization (PSO). The accurate extrinsic orientation parameters are acquired by the Efficient Perspective-N-Point (EPnP). The experiments indicate that the proposed method performs effectively on two challenging urban scenes with an average registration error of 2.01 pixels (with RMSE 0.88) and 2.35 pixels (with RMSE 1.03), respectively. Numéro de notice : A2022-827 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103083 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103083 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102011
in International journal of applied Earth observation and geoinformation > vol 115 (December 2022) . - n° 103083[article]An improved optimization model for crowd evacuation considering individual exit choice preference / Fei Gao in Transactions in GIS, vol 26 n° 7 (November 2022)
[article]
Titre : An improved optimization model for crowd evacuation considering individual exit choice preference Type de document : Article/Communication Auteurs : Fei Gao, Auteur ; Zhiqiang Du, Auteur ; Martin Werner, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2850 - 2873 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] comportement
[Termes IGN] événement
[Termes IGN] gestion de crise
[Termes IGN] optimisation (mathématiques)
[Termes IGN] optimisation par essaim de particules
[Termes IGN] planification
[Termes IGN] secours d'urgenceRésumé : (auteur) Guidance-assisted crowd evacuation is a process of combining individual exit choice behavior with managers'exit assignment control. The knowledge of individual exit choice preference is of great significance for optimizing global exit assignment planning. This study proposes an improved optimization model for crowd evacuation by integrating the individual-level exit choice preference analysis with system-level exit assignment optimization to represent more realistic crowd evacuation decisions. First, the impact factors of individual exit choice behavior are considered in a mixed logit model to predict the probability of each individual choosing each exit in specific situations. Second, a preference-based exit filtering strategy is designed to analyze the sensible alternative exits for individuals or groups in multi-scale evacuation cells. Finally, to pursue optimal exit assignment planning, a multi-objective particle swarm optimization algorithm and an improved social force model are adopted to simulate the process of crowd evacuation and evaluate the performance of the specific exit assignment plans. The case study of an outdoor multiple-exit scenario in Xi'an, China, indicates that the proposed model can help managers to understand the heterogeneity of individual evacuation behaviors. Furthermore, it will support more reliable and realistic evacuation decisions in real-life situations than conventional plans that typically implement the top-n strategy. Numéro de notice : A2022-833 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12984 Date de publication en ligne : 04/09/2022 En ligne : https://doi.org/10.1111/tgis.12984 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102216
in Transactions in GIS > vol 26 n° 7 (November 2022) . - pp 2850 - 2873[article]A fast satellite selection algorithm for multi-GNSS marine positioning based on improved particle swarm optimisation / Xiaoguo Guan in Survey review, vol 54 n° 387 (November 2022)
[article]
Titre : A fast satellite selection algorithm for multi-GNSS marine positioning based on improved particle swarm optimisation Type de document : Article/Communication Auteurs : Xiaoguo Guan, Auteur ; Hongzhou Chai, Auteur ; Guorui Xiao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 554 - 565 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] affaiblissement géométrique de la précision
[Termes IGN] combinaison linéaire ponderée
[Termes IGN] itération
[Termes IGN] milieu marin
[Termes IGN] optimisation par essaim de particules
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] précision du positionnementRésumé : (auteur) This paper introduces an improved particle swarm optimisation algorithm (IPSO), to select satellites rapidly in multi-GNSS marine positioning. The traditional particle swarm optimisation (PSO) may be trapped into local optimisation. To avoid the disadvantage, the proposed algorithm uses linear inertia weight factor and two functions of the immune system, i.e. the memory function and the self-regulatory function. Several experiments are carried out by adopting real survey data collected by the SiNan receiver that is installed on the Snow Dragon scientific research ship during the 9th China Arctic expedition. Compared with the minimum Geometric dilution of precision (GDOP) method, PSO and IPSO significantly reduce the computing time (96.25% and 95.61%). The variance of IPSO is 0.063, which is much lower than that of PSO (0.087). As for the positioning accuracy, the IPSO can reach the centimetre level in the kinematics condition. Numéro de notice : A2022-831 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1991175 Date de publication en ligne : 31/10/2021 En ligne : https://doi.org/10.1080/00396265.2021.1991175 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102017
in Survey review > vol 54 n° 387 (November 2022) . - pp 554 - 565[article]Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India / Rabin Chakrabortty in Geocarto international, vol 37 n° 23 ([15/10/2022])
[article]
Titre : Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India Type de document : Article/Communication Auteurs : Rabin Chakrabortty, Auteur ; Subodh Chandra Pal, Auteur ; Fatemeh Rezaie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6713 - 6735 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie des risques
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] mousson
[Termes IGN] optimisation par essaim de particules
[Termes IGN] réseau neuronal artificiel
[Termes IGN] réseau neuronal profond
[Termes IGN] risque naturel
[Termes IGN] vulnérabilitéRésumé : (auteur) Flood-susceptibility mapping is an important component of flood risk management to control the effects of natural hazards and prevention of injury. We used a remote-sensing and geographic information system (GIS) platform and a machine-learning model to develop a flood susceptibility map of Kangsabati River Basin, India where flash flood is common due to monsoon precipitation with short duration and high intensity. And in this subtropical region, climate change’s impact helps to influence the distribution of rainfall and temperature variation. We tested three models-particle swarm optimization (PSO), an artificial neural network (ANN), and a deep-leaning neural network (DLNN)-and prepared a final flood susceptibility map to classify flood-prone regions in the study area. Environmental, topographical, hydrological, and geological conditions were included in the models, and the final model was selected based on the relations between potentiality of causative factors and flood risk based on multi-collinearity analysis. The model results were validated and evaluated using the area under receiver operating characteristic (ROC) curve (AUC), which is an indicator of the current state of the environment and a value >0.95 implies a greater risk of flash floods. The AUC values for ANN, DLNN, and PSO for training datasets were 0.914, 0.920, and 0.942, respectively. Among these three models, PSO showed the best performance with an AUC value of 0.942. The PSO approach is applicable for flood susceptibility mapping of the eastern part of India, a subtropical region, to allow flood mitigation and help to improve risk management in this region. Numéro de notice : A2022-750 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1953618 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1080/10106049.2021.1953618 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101742
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6713 - 6735[article]Prediction of suspended sediment concentration using hybrid SVM-WOA approaches / Sandeep Samantaray in Geocarto international, vol 37 n° 19 ([15/09/2022])PermalinkA general model for creating robust choropleth maps / Wangshu Mu in Computers, Environment and Urban Systems, vol 96 (September 2022)PermalinkFull-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR / Xue Ji in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)PermalinkDeformation analysis: the modified GREDOD method / Mehmed Batilović in Geodetski vestnik, vol 66 n° 1 (March 2022)PermalinkSynergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images / Alireza Hamedianfar in Geocarto international, vol 37 n° 3 ([01/02/2022])PermalinkFlood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 (2022)PermalinkParticle swarm optimization based water index (PSOWI) for mapping the water extents from satellite images / Mohammad Hossein Gamshadzaei in Geocarto international, vol 36 n° 20 ([01/12/2021])PermalinkEndmember bundle extraction based on multiobjective optimization / Rong Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)PermalinkMetaheuristics for the positioning of 3D objects based on image analysis of complementary 2D photographs / Arnaud Flori in Machine Vision and Applications, vol 32 n° 5 (September 2021)PermalinkIncreasing efficiency of the robust deformation analysis methods using genetic algorithm and generalised particle swarm optimisation / Mehmed Batilović in Survey review, Vol 53 n° 378 (May 2021)Permalink