Descripteur
Termes IGN > 1- Outils - instruments et méthodes > document > document géographique > document cartographique > carte > carte thématique > carte de la végétation > carte forestière
carte forestière |
Documents disponibles dans cette catégorie (72)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing / Yali Zhang in GIScience and remote sensing, vol 60 n° 1 (2023)
[article]
Titre : A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing Type de document : Article/Communication Auteurs : Yali Zhang, Auteur ; Ni Wang, Auteur ; Yuliang Wang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2163574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] carte forestière
[Termes IGN] Chine
[Termes IGN] données multisources
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] phénologie
[Termes IGN] puits de carbone
[Termes IGN] santé des forêtsRésumé : (auteur) Spatially explicit information on the distribution of dominant tree species groups and aboveground biomass (AGB) in forested areas is essential for developing targeted forest management and biodiversity conservation measures, as well as assessing forest carbon sequestration capacity. There is a shortage of continuously updated 30-m spatial resolution products for mapping dominant tree species groups. The vast majority of remote sensing-based AGB estimation approaches have relatively low accuracy for dominant tree species groups or forest types and are unsuitable for AGB modeling. Therefore, this study aims to develop an integrated framework that considers the phenological characteristics of different tree species to improve the mapping accuracies of forest dominant tree groups and corresponding AGB estimates. Thirty-meter resolution maps of dominant tree species groups were created using machine learning algorithms and phenological parameters. Features extracted from optical and radar images and phenological characteristics were used to construct AGB estimation models in a temporally consistent manner to improve the AGB estimation accuracy and perform dynamic AGB monitoring. The proposed method accurately characterized the dynamic distribution of the dominant tree species groups in the study area. The traditional AGB model that does not consider different forest types or species had an R2 value of 0.52, whereas the proposed model that considers phenology and forest types had an R2 value of 0.67. This result indicates that incorporating information on phenology and dominant species improves the accuracy of AGB estimations. The AGB in most regions was 30–55 t/ha, showing that the majority of the forests were young or middle-aged stands, and the areal percentage of AGB greater than 30 t/ha increased during the study period, suggesting an improvement in forest quality. Furthermore, the oak AGB was the highest, indicating that oak afforestation should be encouraged to enhance the carbon sequestration capacity of future forest ecosystems. The results provide new insights for researchers and managers to understand the trends of forest development and forest health, as well as technical information and a database for formulating more rational forest management strategies. Numéro de notice : A2023-121 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2163574 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2163574 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102496
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2163574[article]Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning / Thiên-Anh Nguyen in Remote sensing of environment, vol 281 (November 2022)
[article]
Titre : Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning Type de document : Article/Communication Auteurs : Thiên-Anh Nguyen, Auteur ; Benjamin Kellenberger, Auteur ; Devis Tuia, Auteur Année de publication : 2022 Article en page(s) : n° 113217 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alpes
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] carte forestière
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] écotone
[Termes IGN] hauteur des arbres
[Termes IGN] image à très haute résolution
[Termes IGN] image aérienne
[Termes IGN] image RVB
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] SuisseRésumé : (auteur) Forest maps are essential to understand forest dynamics. Due to the increasing availability of remote sensing data and machine learning models like convolutional neural networks, forest maps can these days be created on large scales with high accuracy. Common methods usually predict a map from remote sensing images without deliberately considering intermediate semantic concepts that are relevant to the final map. This makes the mapping process difficult to interpret, especially when using opaque deep learning models. Moreover, such procedure is entirely agnostic to the definitions of the mapping targets (e.g., forest types depending on variables such as tree height and tree density). Common models can at best learn these rules implicitly from data, which greatly hinders trust in the produced maps. In this work, we aim at building an explainable deep learning model for forest mapping that leverages prior knowledge about forest definitions to provide explanations to its decisions. We propose a model that explicitly quantifies intermediate variables like tree height and tree canopy density involved in the forest definitions, corresponding to those used to create the forest maps for training the model in the first place, and combines them accordingly. We apply our model to mapping forest types using very high resolution aerial imagery and lay particular focus on the treeline ecotone at high altitudes, where forest boundaries are complex and highly dependent on the chosen forest definition. Results show that our rule-informed model is able to quantify intermediate key variables and predict forest maps that reflect forest definitions. Through its interpretable design, it is further able to reveal implicit patterns in the manually-annotated forest labels, which facilitates the analysis of the produced maps and their comparison with other datasets. Numéro de notice : A2022-794 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2022.113217 Date de publication en ligne : 01/09/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101928
in Remote sensing of environment > vol 281 (November 2022) . - n° 113217[article]Using multi-temporal tree inventory data in eucalypt forestry to benchmark global high-resolution canopy height models. A showcase in Mato Grosso, Brazil / Adrián Pascual in Ecological Informatics, vol 70 (September 2022)
[article]
Titre : Using multi-temporal tree inventory data in eucalypt forestry to benchmark global high-resolution canopy height models. A showcase in Mato Grosso, Brazil Type de document : Article/Communication Auteurs : Adrián Pascual, Auteur ; Frederico Tupinambá-Simões, Auteur ; Tiago de Conto, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte forestière
[Termes IGN] Eucalyptus (genre)
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] incertitude des données
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Mato Grosso
[Termes IGN] modèle numérique de surface de la canopée
[Vedettes matières IGN] Inventaire forestierMots-clés libres : E. urograndis E. urophylla x E. grandis, E. urophylla and E. camaldulensis x E. grandis Résumé : (auteur) The global monitoring of forest structure worldwide is increasingly being supported by refined and enhanced satellite mission datasets. Forest canopy height is a global metric to characterise and monitor dynamics in forest ecosystems worldwide. Satellite mapping missions as NASA's Global Ecosystem Dynamics Investigation (GEDI) are creating opportunities to refine global forest canopy height models adding forest structural information to time-series satellite imagery. A recent global canopy height model presented by Lang et al., (2022) using GEDI and 10-m Sentinel-2 and the map from Potapov et al., (2020) using GEDI and Landsat are both tested in this study using multi-temporal tree-level data collected over eucalypt plantations in Brazil. Our results at plot-level showed Lang et al., (2022)’s estimates of canopy height came short compared to 2020 maximum and mean tree height records in the plots, 7.6 and 3.6 m, respectively, but adding CHM standard deviation improves the agreement of ground records for maximum tree height. Higher errors were computed for the plots in 2019 using the Potapov's 30-m CHM: 14.2 and 9.5 m, respectively. Averaged stand values were more similar between the three sources tested. We report improvement from the 30-m CHM to the 10-m, but still height saturation problems were observed when accounting for height differences in tall eucalypt trees. As more global products for forest height and biomass are becoming available to users, more validation exercises as presented in this study are needed to assess the suitability of CHM products to forestry needs, and facilitate the uptake and actionability of the next generation of global height and biomass products. We provide recommendations and insights on the use of GEDI laser data for global mapping and on the potential of commercial forestry areas to benchmark the accuracy of satellite mapping missions focusing on tree height estimation in the tropics. Numéro de notice : A2022-615 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ecoinf.2022.101748 En ligne : https://doi.org/10.1016/j.ecoinf.2022.101748 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101370
in Ecological Informatics > vol 70 (September 2022)[article]About tree height measurement: Theoretical and practical issues for uncertainty quantification and mapping / Samuele De petris in Forests, vol 13 n° 7 (July 2022)
[article]
Titre : About tree height measurement: Theoretical and practical issues for uncertainty quantification and mapping Type de document : Article/Communication Auteurs : Samuele De petris, Auteur ; Philippo Sarvia, Auteur ; Enrico Borgogno Mondino, Auteur Année de publication : 2022 Article en page(s) : n°969 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de sensibilité
[Termes IGN] biome
[Termes IGN] carte forestière
[Termes IGN] Google Earth Engine
[Termes IGN] hauteur des arbres
[Termes IGN] incertitude de mesurage
[Termes IGN] modèle de simulation
[Termes IGN] pente
[Termes IGN] statistiques
[Termes IGN] variance
[Vedettes matières IGN] ForesterieRésumé : (auteur) Forest height is a fundamental parameter in forestry. Tree height is widely used to assess a site’s productivity both in forest ecology research and forest management. Thus, a precise height measure represents a necessary step for the estimation of carbon storage at the local, national, and global scales. In this context, error in height measurement necessarily affects the accuracy of related estimates. Ordinarily, forest height is surveyed by ground sampling adopting hypsometers. The latter suffers from many errors mainly related to the correct tree apex identification (not always well visible in dense stands) and to the measurement process itself. In this work, a statistically based operative method for estimating height measurement uncertainty (σH) was proposed using the variance propagation law. Some simulations were performed involving several combinations of terrain slope, tree height, and survey distances by modelling the σH behaviour and its sensitivity to such parameters. Results proved that σH could vary between 0.5 m and up to 20 m (worst case). Sensitivity analysis shows that terrain slopes and distance poorly affect σH, while angles are the main drivers of height uncertainty. Finally, to give a practical example of such deductions, tree height uncertainty was mapped at the global scale using Google Earth Engine and summarized per forest biomes. Results proved that tropical biomes have higher uncertainty (from 1 m to 4 m) while shrublands and tundra have the lowest (under 1 m). Numéro de notice : A2022-546 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f13070969 Date de publication en ligne : 22/06/2022 En ligne : https://doi.org/10.3390/f13070969 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101131
in Forests > vol 13 n° 7 (July 2022) . - n°969[article]Production of optimum forest roads and comparison of these routes with current forest roads: a case study in Maçka, Turkey / Faruk Yildirim in Geocarto international, vol 37 n° 8 ([01/05/2022])
[article]
Titre : Production of optimum forest roads and comparison of these routes with current forest roads: a case study in Maçka, Turkey Type de document : Article/Communication Auteurs : Faruk Yildirim, Auteur ; Fatih Kadi, Auteur Année de publication : 2022 Article en page(s) : pp 2175 - 2197 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse comparative
[Termes IGN] carte forestière
[Termes IGN] chemin forestier
[Termes IGN] interface graphique
[Termes IGN] Matlab
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] recherche du chemin optimal, algorithme de
[Termes IGN] TurquieRésumé : (auteur) Forest roads are a basic necessity in forestry policies and should be planned by considering many factors. This study aims to generate optimum forest road routes and to compare them with current forest roads. First, FRNSM has been produced according to AHP, using nine factors for the study area. Then, risk statuses of the current forest roads are examined. According to results, 35% of the total forest road has high risk. A MATLAB-GUI based an application using optimal path algorithm developed for the second stage of the study has been produced. Using this application, optimum forest road routes have been produced for 11 pilot areas selected from the region. Generated routes have been compared with current forest roads in the region. It has been observed that generated routes in all areas are more suitable than current forest roads in terms of total length and average risk of suitability. Numéro de notice : A2022-504 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1818852 Date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.1080/10106049.2020.1818852 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101025
in Geocarto international > vol 37 n° 8 [01/05/2022] . - pp 2175 - 2197[article]Travaux actuels d'inventaire des forêts à forte naturalité à l'échelle nationale et européenne / Fabienne Benest in Revue forestière française, vol 73 n° 2 - 3 (2021)PermalinkMapping forest site quality at national level / Ana Aguirre in Forest ecology and management, vol 508 (March-15 2022)PermalinkUltrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach / Linyuan Li in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)PermalinkMapping abundance distributions of allergenic tree species in urbanized landscapes: A nation-wide study for Belgium using forest inventory and citizen science data / Sébastien Dujardin in Landscape and Urban Planning, vol 218 (February 2022)PermalinkPlanning coastal Mediterranean stone pine (Pinus pinea L.) reforestations as a green infrastructure: combining GIS techniques and statistical analysis to identify management options / Luigi Portoghesi in Annals of forest research, vol 65 n° 1 (January - June 2022)PermalinkModeling post-logging height growth of black spruce-dominated boreal forests by combining airborne LiDAR and time since harvest maps / Batistin Bour in Forest ecology and management, vol 502 (December-15 2021)PermalinkNational scale mapping of larch plantations for Wales using the Sentinel-2 data archive / Suvarna M. Punalekar in Forest ecology and management, vol 501 (December-1 2021)PermalinkProvisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change / Debojyoti Chakraborty in Annals of Forest Science, vol 78 n° 2 (June 2021)PermalinkApplications of remote sensing data in mapping of forest growing stock and biomass / Jose Aranha (2021)PermalinkApport de la modélisation physique pour la cartographie de la biodiversité végétale en forêts tropicales par télédétection optique / Dav Ebengo Mwampongo (2021)Permalink