Descripteur
Documents disponibles dans cette catégorie (119)



Etendre la recherche sur niveau(x) vers le bas
An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images / Kwanghun Choi in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)
![]()
[article]
Titre : An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images Type de document : Article/Communication Auteurs : Kwanghun Choi, Auteur ; Wontaek LIM, Auteur ; Byungwoo Chang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 180 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] arbre urbain
[Termes IGN] détection automatique
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] gestion forestière durable
[Termes IGN] image Streetview
[Termes IGN] inventaire de la végétation
[Termes IGN] segmentation sémantique
[Termes IGN] SéoulRésumé : (auteur) Tree species and canopy structural profile (‘tree profile’) are among the most critical environmental factors in determining urban ecosystem services such as climate and air quality control from urban trees. To accurately characterize a tree profile, the tree diameter, height, crown width, and height to the lowest live branch must be all measured, which is an expensive and time-consuming procedure. Recent advances in artificial intelligence aids to efficiently and accurately measure the aforementioned tree profile parameters. This can be particularly helpful if spatially extensive and accurate street-level images provided by Google (‘streetview’) or Kakao (‘roadview’) are utilized. We focused on street trees in Seoul, the capital city of South Korea, and suggested a novel approach to create a tree profile and inventory based on deep learning algorithms. We classified urban tree species using the YOLO (You Only Look Once), one of the most popular deep learning object detection algorithms, which provides an uncomplicated method of creating datasets with custom classes. We further utilized semantic segmentation algorithm and graphical analysis to estimate tree profile parameters by determining the relative location of the interface of tree and ground surface. We evaluated the performance of the model by comparing the estimated tree heights, diameters, and locations from the model with the field measurements as ground truth. The results are promising and demonstrate the potential of the method for creating urban street tree profile inventory. In terms of tree species classification, the method showed the mean average precision (mAP) of 0.564. When we used the ideal tree images, the method also reported the normalized root mean squared error (NRMSE) for the tree height, diameter at breast height (DBH), and distances from the camera to the trees as 0.24, 0.44, and 0.41. Numéro de notice : A2022-503 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.06.004 Date de publication en ligne : 22/06/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.06.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101001
in ISPRS Journal of photogrammetry and remote sensing > vol 190 (August 2022) . - pp 165 - 180[article]Species level classification of Mediterranean sparse forests-maquis formations using Sentinel-2 imagery / Semiha Demirbaş Çağlayana in Geocarto international, vol 37 n° 6 (June 2022)
![]()
[article]
Titre : Species level classification of Mediterranean sparse forests-maquis formations using Sentinel-2 imagery Type de document : Article/Communication Auteurs : Semiha Demirbaş Çağlayana, Auteur ; Ugur Murat Leloglu, Auteur ; Christian Ginzler, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1587 - 1606 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] Arbutus unedo
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données multitemporelles
[Termes IGN] Erica (genre)
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forêt méditerranéenne
[Termes IGN] Genista (genre)
[Termes IGN] gestion forestière durable
[Termes IGN] image Sentinel-MSI
[Termes IGN] maquis
[Termes IGN] Olea europaea
[Termes IGN] TurquieRésumé : (auteur) Essential forest ecosystem services can be assessed by better understanding the diversity of vegetation, specifically those of Mediterranean region. A species level classification of maquis would be useful in understanding vegetation structure and dynamics, which would be an indicator of degradation or succession in the region. Although remote sensing was regularly used for classification in the region, maquis are simply represented as one to three categories based on density or height. To fill this gap, we test the capability of Sentinel-2 imagery, together with selected ancillary variables, for an accurate mapping of the dominant maquis formations. We applied Recursive Feature Selection procedure and used a Random Forest classifier. The algorithm is tested using ground truth collected from site and reached 78% and 93% overall accuracy at species level and physiognomic level, respectively. Our results suggest species level characterization of dominant maquis is possible with Sentinel-2 spatial resolution. Numéro de notice : A2022-475 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1783581 Date de publication en ligne : 09/07/2020 En ligne : https://doi.org/10.1080/10106049.2020.1783581 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100822
in Geocarto international > vol 37 n° 6 (June 2022) . - pp 1587 - 1606[article]Characterizing stream morphological features important for fish habitat using airborne laser scanning data / Spencer Dakin Kuiper in Remote sensing of environment, vol 272 (April 2022)
![]()
[article]
Titre : Characterizing stream morphological features important for fish habitat using airborne laser scanning data Type de document : Article/Communication Auteurs : Spencer Dakin Kuiper, Auteur ; Nicholas C. Coops, Auteur ; Piotr Tompalski, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112948 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bassin hydrographique
[Termes IGN] cours d'eau
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] écosystème forestier
[Termes IGN] forêt ripicole
[Termes IGN] géomorphologie locale
[Termes IGN] gestion forestière durable
[Termes IGN] habitat animal
[Termes IGN] modèle numérique de surface
[Termes IGN] poisson (faune aquatique)
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] Vancouver (Colombie britannique)Résumé : (auteur) Understanding changes in salmonid populations and their habitat is a critical issue given changing climate, their importance as a keystone species, and their cultural significance. Terrain features such as slope, gradient, and morphology, as well as forest structure attributes including canopy cover, height, and presence of on ground coarse wood, all influence the quality and quantity of salmonid habitat in forested ecosystems. The increasing availability of Airborne Laser Scanning (ALS) data for forest applications offers an opportunity to utilize these data for assessing the quality and quantity of habitat, which is often costly and difficult to characterize. ALS data provides detailed and accurate Digital Elevation Models (DEMs) under forest canopies, which in turn enable the characterization of detailed stream networks, as well as stream and terrain attributes important to salmonids. At the Nahmint watershed on Vancouver Island, British Columbia, Canada, we sampled six, 200 m long stream reaches, describing a range of terrain and stream features following standard data collection protocols. Our objective in this research was to use ALS data to estimate three attributes from the 3D point cloud and DEM that are known to be important for salmonids, including bankfull width,instream wood and discrete stream morphological units. Results indicate that ALS-based estimates had strong, significant, correlations with field-measured attributes (with Pearson's correlation of 0.80 and 0.81 for bankfull width and instream wood, respectively). Bankfull width was slightly underestimated using the ALS data (Bias = −1.01 m; MAD = 1.89 m; RMSD = 2.05 m) and 80% of instream wood pieces were detected. Using ALS-derived predictors in a Random Forest model, discrete stream morphological units (i.e. pools, riffles, glides, cascades) were classified with an overall accuracy of 85%, with pools having the highest user's class accuracy at 96%. Results presented herein indicate that ALS data can be used to provide a fine scale characterization of stream attributes that are required to identify salmonid habitat, providing critical information for sustainable forest management decision making, and providing a foundation for advanced salmonid habitat modeling. Numéro de notice : A2022-283 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112948 Date de publication en ligne : 24/02/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112948 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100301
in Remote sensing of environment > vol 272 (April 2022) . - n° 112948[article]Mapping forest site quality at national level / Ana Aguirre in Forest ecology and management, vol 508 (15 March 2022)
![]()
[article]
Titre : Mapping forest site quality at national level Type de document : Article/Communication Auteurs : Ana Aguirre, Auteur ; Daniel Moreno-Fernández, Auteur ; Iciar A. Alberdi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120043 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] autocorrélation spatiale
[Termes IGN] carte forestière
[Termes IGN] climat local
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] Espagne
[Termes IGN] gestion forestière durable
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] krigeage
[Termes IGN] modèle numérique
[Termes IGN] sécheresse
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Determining site quality is essential in order to develop sustainable forest management, allowing more appropriate silvicultural decisions to be made. However, most studies carried out in Spain have focused on a few species and at local scale, which makes it difficult to apply the findings or conduct studies at larger scales. The aim of this study is to obtain a site quality map at national scale for the main forest species (Pinus sylvestris, Pinus uncinata, Pinus pinea, Pinus halepensis, Pinus nigra, Pinus pinaster, Pinus canariensis, Pinus radiata, Abies alba, Juniperus thurifera, Quercus robur, Querus petraea, Quercus pyrenaica, Quercus faginea, Quercus ilex, Quercus suber, Populus nigra, Eucalyptus globulus, Eucalyptus camaldulensis, Fagus sylvatica, Castanea sativa, Quercus pubescens, Populus × canadensis, Betula alba). National Forest Inventory (NFI) data has been used to develop site quality models using the site form (SF) concept (dominant height- dominant diameter relationship). Universal Kriging techniques have been used to identify both the geographical trend linked to site factors (climatic, soil and physiographic variables) and their spatial autocorrelation to estimate the SF for every species. Finally, the information was interpolated for each tile of the Spanish National Forest Map in which the species considered was present, thus obtaining a SF national map for each species. The results reveal biologically consistent SF models, indicating that both NFI data and SF are suitable for studying site quality at national level. The variables used differ among the species analyzed, altitude being the most important variable for estimating SF models, while aridity and soil variables are less important. The results obtained could provide an important tool for forest managers working at national level with the main forest species in Spain. This methodology could be used for larger areas, such as at European level, and would allow some species to be analyzed at larger scales. Numéro de notice : A2022-161 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1016/j.foreco.2022.120043 Date de publication en ligne : 25/01/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120043 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99780
in Forest ecology and management > vol 508 (15 March 2022) . - n° 120043[article]Competition and climate influence in the basal area increment models for Mediterranean mixed forests / Diego Rodríguez de Prado in Forest ecology and management, vol 506 (15 February 2022)
![]()
[article]
Titre : Competition and climate influence in the basal area increment models for Mediterranean mixed forests Type de document : Article/Communication Auteurs : Diego Rodríguez de Prado, Auteur ; José Riofrio, Auteur ; Jorge Aldea, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 119955 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] climat aride
[Termes IGN] climat méditerranéen
[Termes IGN] croissance des arbres
[Termes IGN] Espagne
[Termes IGN] forêt méditerranéenne
[Termes IGN] gestion forestière durable
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modélisation de la forêt
[Termes IGN] peuplement mélangé
[Termes IGN] surface terrière
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Competition plays a key role controlling tree growth in mixed forests. Contrary to monocultures, quantifying species mixing influence on tree growth suppose a challenge since the presence of two or more species requires to estimate the degree of intra- and inter-specific competition among trees. Moreover, it is well known that aridity can also influence tree growth, especially in the Mediterranean Basin. In the present context of climate change, it is essential to take into account species mixing and aridity uncertainty in the design of sustainable management guidelines for Mediterranean mixed forests. To achieve that, data from Spanish National Forest Inventory was used in this study to fit new mixed-effects basal area increment (BAI) models for 29 two-species compositions in Spain. A wide range of different competition structures (intra-specific, inter-specific, size-symmetric and size-asymmetric) and aridity conditions (in terms of the De Martonne Index) were included and tested into the BAI models. Parameter estimations were obtained for all possible species, mixtures and combinations by Maximum Likelihood (ML). Models with all the coefficients being significant (p Numéro de notice : A2022-059 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2021.119955 Date de publication en ligne : 28/12/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119955 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99470
in Forest ecology and management > vol 506 (15 February 2022) . - n° 119955[article]Pourquoi la forêt française a besoin d’un traitement de fond / Guillaume Decocq in The Conversation France, vol 2022 ([10/02/2022])
PermalinkGrowing stock monitoring by European National Forest Inventories: Historical origins, current methods and harmonisation / Thomas Gschwantner in Forest ecology and management, vol 505 (1 February 2022)
PermalinkNational implementation of the forest Europe indicators for sustainable forest management / Stefanie Linser in Forests, vol 13 n° 2 (February 2022)
PermalinkConservation zones increase habitat heterogeneity of certified Mediterranean oak woodlands / Teresa Mexia in Forest ecology and management, vol 504 (15 January 2022)
PermalinkAn assessment of forest loss and its drivers in protected areas on the Copperbelt province of Zambia: 1972–2016 / Darius Phiri in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
PermalinkTowards sustainable forestry: Using a spatial Bayesian belief network to quantify trade-offs among forest-related ecosystem services / Catherine Frizzle in Journal of Environmental Management, vol 301 ([01/01/2022])
PermalinkForest type matters: Global review about the structure of oak dominated old-growth temperate forests / Janos Bölöni in Forest ecology and management, vol 500 (15 November 2021)
PermalinkAssessing the land expectation value of even-aged vs coppice-with-standards stand management and long-term effects of whole-tree harvesting on forest productivity and profitability / Abdelwahad Bessaad in Annals of Forest Science [en ligne], vol 78 n° 3 (September 2021)
PermalinkEtat et évolution des forêts françaises métropolitaines : indicateurs de gestion durable 2020 / Benjamin Piton (3/08/2021)
![]()
PermalinkTree height growth modelling using LiDAR-derived topography information / Milan Kobal in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)
Permalink