Descripteur



Etendre la recherche sur niveau(x) vers le bas
Precise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering / Ali Ozgun Ok in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
![]()
[article]
Titre : Precise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering Type de document : Article/Communication Auteurs : Ali Ozgun Ok, Auteur ; Asli Ozdarici-Ok, Auteur Année de publication : 2020 Article en page(s) : pp 557-569 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] Citrus limon
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] état de l'art
[Termes descripteurs IGN] extraction d'arbres
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modèle stochastique
[Termes descripteurs IGN] TurquieRésumé : (Auteur) In this study, we present an original unified strategy for the precise extraction of individual citrus fruit trees from single digital surface model (DSM) input data. A probabilistic method combining the circular shape information with the knowledge of the local maxima in the DSM has been used for the detection of the candidate trees. An active contour is applied within each detected region to extract the borders of the objects. Thereafter, all extracted objects are seamlessly divided into clusters considering a new feature data set formed by (1) the properties of trees, (2) planting parameters, and (3) neighborhood relations. This original clustering stage has led to two new contributions: (1) particular objects or clustered structures having distinctive characters and relationships other than the citrus objects can be identified and eliminated, and (2) the information revealed by clustering can be used to recover missing citrus objects within and/or nearby each cluster. The main finding of this research is that a successful clustering can provide valuable input for identifying incorrect and missing information in terms of citrus tree extraction. The proposed strategy is validated in eight test sites selected from the northern part of Mersin province of Turkey. The results achieved are also compared with the state-of-the-art methods developed for tree extraction, and the success of the proposed unified strategy is clearly highlighted. Numéro de notice : A2020-491 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.9.557 date de publication en ligne : 01/09/2020 En ligne : https://doi.org/10.14358/PERS.86.9.557 Format de la ressource électronique : LUR article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95933
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 9 (September 2020) . - pp 557-569[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020091 SL Revue Centre de documentation Revues en salle Disponible Tree annotations in LiDAR data using point densities and convolutional neural networks / Ananya Gupta in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
![]()
[article]
Titre : Tree annotations in LiDAR data using point densities and convolutional neural networks Type de document : Article/Communication Auteurs : Ananya Gupta, Auteur ; Jonathan Byrne, Auteur ; David Moloney, Auteur Année de publication : 2020 Article en page(s) : pp 971 - 981 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] Dublin (Irlande ; ville)
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] extraction d'arbres
[Termes descripteurs IGN] image spectrale
[Termes descripteurs IGN] Montréal (Québec)
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] voxel
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) LiDAR provides highly accurate 3-D point clouds. However, data need to be manually labeled in order to provide subsequent useful information. Manual annotation of such data is time-consuming, tedious, and error prone, and hence, in this article, we present three automatic methods for annotating trees in LiDAR data. The first method requires high-density point clouds and uses certain LiDAR data attributes for the purpose of tree identification, achieving almost 90% accuracy. The second method uses a voxel-based 3-D convolutional neural network on low-density LiDAR data sets and is able to identify most large trees accurately but struggles with smaller ones due to the voxelization process. The third method is a scaled version of the PointNet++ method and works directly on outdoor point clouds and achieves an F score of 82.1% on the ISPRS benchmark data set, comparable to the state-of-the-art methods but with increased efficiency. Numéro de notice : A2020-095 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2942201 date de publication en ligne : 11/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2942201 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94658
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 2 (February 2020) . - pp 971 - 981[article]Measuring stem diameters with TLS in boreal forests by complementary fitting procedure / Timo P Pitkänen in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
![]()
[article]
Titre : Measuring stem diameters with TLS in boreal forests by complementary fitting procedure Type de document : Article/Communication Auteurs : Timo P Pitkänen, Auteur ; Pasi Raumonen, Auteur ; Annika S. Kangas, Auteur Année de publication : 2019 Article en page(s) : pp 294 - 306 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] calcul automatique
[Termes descripteurs IGN] chaîne de traitement
[Termes descripteurs IGN] diamètre des arbres
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] extraction d'arbres
[Termes descripteurs IGN] forêt boréale
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] méthode de mesure
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] télémétrie laser terrestre
[Termes descripteurs IGN] troncRésumé : (auteur) Point clouds generated by terrestrial laser scanners (TLS) have enabled new ways to measure stem diameters. A common method for diameter calculation is to fit cylindrical or circular shapes into the TLS point cloud, which can be based either on a single scan or a co-registered combination of several scans. However, as various defects in the point cloud may affect the final diameter results, we propose an automatized processing chain which takes advantage of complementing steps. Processing consists of two fitting phases and an additional taper curve calculation to define the final diameter measurements. First, stems are detected from co-registered data of several scans using surface normals and cylinder fitting. This provides a robust framework for localizing the stems and estimating diameters at various heights. Then, guided by the cylinders and their indicative diameters, another fitting round is performed by cutting the stems into thin horizontal slices and reassessing their diameters by circular shape. For each slice, the quality of the cylinder-modelled diameter is evaluated first with co-registered data and if it is found to be deficient, potentially due to modelling defects or co-registration errors, diameter is detected through single scans. Finally, slice diameters are applied to construct a spline-based taper curve model for each tree, which is used to calculate the final stem dimensions. This methodology was tested in southern Finland using a set of 505 trees. At the breast height level (1.3 m), the results indicate 5.2 mm mean difference (3.2%), −0.4 mm bias (-0.3%) and 7.3 mm root mean squared error (4.4%) to reference measurements, and at the height of 6.0 m, respective values are 6.5 mm (3.6%), +1.6 mm (0.9%) and 8.4 mm (4.8%). These values are smaller compared to most of the corresponding contemporary studies, and outperform the initial cylinder models. This indicates that the applied processing chain is capable of producing relatively accurate diameter measurements, which can, at the cost of computational heaviness, remove various defects and improve the modelling results. Numéro de notice : A2019-039 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.11.027 date de publication en ligne : 08/12/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.11.027 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91976
in ISPRS Journal of photogrammetry and remote sensing > vol 147 (January 2019) . - pp 294 - 306[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019011 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019013 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2019012 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds / Wenxia Dai in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
![]()
[article]
Titre : A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds Type de document : Article/Communication Auteurs : Wenxia Dai, Auteur ; Yang Bisheng, Auteur ; Zhen Dong, Auteur ; Ahmed Shaker, Auteur Année de publication : 2018 Article en page(s) : pp 400 - 411 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] extraction d'arbres
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] Ontario (Canada)
[Termes descripteurs IGN] pinophyta
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) Characterization of individual trees is essential for many applications in forest management and ecology. Previous studies relied on single tree detection from monochromatic wavelength airborne laser scanning (ALS) systems and they focused on the use of the geometric spatial information of the point clouds (i.e., X, Y, and Z coordinates). However, there is quite often a difficulty dealing with clumped trees when only the geometric spatial information is considered. The emergence of multispectral LiDAR sensors provides a new solution for individual tree structure acquisition. The aim of this paper is to investigate the performance of multispectral ALS data for delineating individual trees which are challenging by using the monochromatic wavelength ALS system. The proposed workflow utilizes the mean shift segmentation method on different feature spaces for crown isolation. In addition, both spatial domain and multispectral domain are used to refine the under-segmentation crown segments. Ten plots (2 sets of different structural complexity) located in the dense coniferous forest area in Tobermory, Ontario, Canada are selected as experiment data. Results show that the developed method correctly detects 88% and 82% of the dominant trees with and without multispectral information, respectively. Compared with segmentation using geometric spatial information solely, the main improvements are achieved for clumped tree segment with the distinguished multispectral features. This study demonstrates that multispectral airborne laser scanning data is more capable for individual tree delineation than monochromatic wavelength laser scanning data in dealing with forests with clumped crowns in dense forests. Numéro de notice : A2018-404 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.08.010 date de publication en ligne : 17/08/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.08.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90862
in ISPRS Journal of photogrammetry and remote sensing > vol 144 (October 2018) . - pp 400 - 411[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018101 RAB Revue Centre de documentation En réserve 3L Disponible 081-2018103 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2018102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Semantic segmentation of forest stands of pure species combining airborne lidar data and very high resolution multispectral imagery / Clément Dechesne in ISPRS Journal of photogrammetry and remote sensing, vol 126 (April 2017)
![]()
[article]
Titre : Semantic segmentation of forest stands of pure species combining airborne lidar data and very high resolution multispectral imagery Type de document : Article/Communication Auteurs : Clément Dechesne , Auteur ; Clément Mallet
, Auteur ; Arnaud Le Bris
, Auteur ; Valérie Gouet-Brunet
, Auteur
Année de publication : 2017 Projets : HYEP / Weber, Christiane Article en page(s) : pp 129 – 145 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] classification automatique
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] délimitation
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] extraction d'arbres
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] peuplement forestierRésumé : (auteur) Forest stands are the basic units for forest inventory and mapping. Stands are defined as large forested areas (e.g., ⩾⩾2 ha) of homogeneous tree species composition and age. Their accurate delineation is usually performed by human operators through visual analysis of very high resolution (VHR) infra-red images. This task is tedious, highly time consuming, and should be automated for scalability and efficient updating purposes. In this paper, a method based on the fusion of airborne lidar data and VHR multispectral images is proposed for the automatic delineation of forest stands containing one dominant species (purity superior to 75%). This is the key preliminary task for forest land-cover database update. The multispectral images give information about the tree species whereas 3D lidar point clouds provide geometric information on the trees and allow their individual extraction. Multi-modal features are computed, both at pixel and object levels: the objects are individual trees extracted from lidar data. A supervised classification is then performed at the object level in order to coarsely discriminate the existing tree species in each area of interest. The classification results are further processed to obtain homogeneous areas with smooth borders by employing an energy minimum framework, where additional constraints are joined to form the energy function. The experimental results show that the proposed method provides very satisfactory results both in terms of stand labeling and delineation (overall accuracy ranges between 84% and 99%). Numéro de notice : A2017-116 Affiliation des auteurs : LaSTIG MATIS (2012-2019) Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.02.011 date de publication en ligne : 27/02/2017 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2017.02.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84511
in ISPRS Journal of photogrammetry and remote sensing > vol 126 (April 2017) . - pp 129 – 145[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017041 RAB Revue Centre de documentation En réserve 3L Disponible 081-2017043 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2017042 DEP-EAF Revue Nancy Dépôt en unité Disponible Caractérisation de la végétation de Rennes Métropole par relevé LiDAR en vue de sa modélisation / Clément Doceul (2017)
PermalinkAirborne lidar estimation of aboveground forest biomass in the absence of field inventory / António Ferraz in Remote sensing, vol 8 n° 8 (August 2016)
![]()
PermalinkA novel computer-aided tree species identification method based on burst wind segmentation of 3D bark textures / Alice Ahlem Othmani in Machine Vision and Applications, vol 27 n° 5 (July 2016)
PermalinkPTrees: A point-based approach to forest tree extraction from lidar data / Cédric Vega in International journal of applied Earth observation and geoinformation, vol 33 (December 2014)
PermalinkDéfinition et identification d'objets sur une image à haute résolution spatiale : Application à la différenciation de types de châtaigneraies / Muriel Bonin in Ingénieries : eau, agriculture, territoires, n° 27 (septembre 2001)
Permalink