Descripteur
Documents disponibles dans cette catégorie (12)



Etendre la recherche sur niveau(x) vers le bas
Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions / Johannes Breidenbach in Annals of Forest Science [en ligne], vol 79 n° 1 (2022)
![]()
[article]
Titre : Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions Type de document : Article/Communication Auteurs : Johannes Breidenbach, Auteur ; David Ellison, Auteur ; Hans Petersson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] changement climatique
[Termes IGN] données spatiotemporelles
[Termes IGN] Finlande
[Termes IGN] image à haute résolution
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] précision de l'estimation
[Termes IGN] récolte de bois
[Termes IGN] Suède
[Termes IGN] surface forestière
[Termes IGN] Union EuropéenneRésumé : (Auteur) Using satellite-based maps, Ceccherini et al. (Nature 583:72-77, 2020) report abruptly increasing harvested area estimates in several EU countries beginning in 2015. Using more than 120,000 National Forest Inventory observations to analyze the satellite-based map, we show that it is not harvested area but the map’s ability to detect harvested areas that abruptly increases after 2015 in Finland and Sweden. Numéro de notice : A2022-068 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01120-4 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.1186/s13595-022-01120-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100013
in Annals of Forest Science [en ligne] > vol 79 n° 1 (2022) . - n° 2[article]Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model / Hasan Aksoy in Geocarto international, vol 37 n° 4 (April 2022)
![]()
[article]
Titre : Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model Type de document : Article/Communication Auteurs : Hasan Aksoy, Auteur ; Sinan Kaptan, Auteur Année de publication : 2022 Article en page(s) : pp 1183 - 1202 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] automate cellulaire
[Termes IGN] classification dirigée
[Termes IGN] détection de changement
[Termes IGN] gestion forestière
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] modèle de Markov
[Termes IGN] occupation du sol
[Termes IGN] surface cultivée
[Termes IGN] surface forestière
[Termes IGN] Turquie
[Termes IGN] utilisation du solRésumé : (auteur) This study aimed to simulate and assess forest cover and land use/land cover (LULC) changes between 2019 and 2039 using the cellular automata-Markov model. The performance of the model was evaluated by comparing the 2019 simulation map with the 2019 supervised classified map, and it was found to be reliable, with a similarity rate of 85.43%. The LULC analysis and estimates were carried out for a total of six classes: coniferous, broad-leaf, mixed forest, settlement, water and agriculture. Between 1999 and 2019, the areas of total forest increased by 17.4%, settlement by 84.6% and water by 20.1%, whereas the agriculture area decreased by 33.2%. According to 2019‒2039 land use/cover simulation results, there were decreases of 2.4% in total forest area and 3.7% in residential and water surface areas, but a 6.9% decrease in the agriculture class. Tracking these changes will contribute to decision making and strategy development efforts of forest planners and managers. Numéro de notice : A2022-397 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1778102 Date de publication en ligne : 22/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1778102 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100691
in Geocarto international > vol 37 n° 4 (April 2022) . - pp 1183 - 1202[article]Unprecedented pluri-decennial increase in the growing stock of French forests is persistent and dominated by private broadleaved forests / Jean-Daniel Bontemps in Annals of Forest Science [en ligne], vol 77 n° 4 (December 2020)
![]()
[article]
Titre : Unprecedented pluri-decennial increase in the growing stock of French forests is persistent and dominated by private broadleaved forests Type de document : Article/Communication Auteurs : Jean-Daniel Bontemps , Auteur ; Anaïs Denardou-Tisserand
, Auteur ; Jean-Christophe Hervé (1961-2017)
, Auteur ; Jean Bir
, Auteur ; Jean-Luc Dupouey, Auteur
Année de publication : 2020 Projets : ARBRE / AgroParisTech Article en page(s) : n° 98 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] bois sur pied
[Termes IGN] changement d'utilisation du sol
[Termes IGN] forêt de feuillus
[Termes IGN] forêt privée
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle de régression
[Termes IGN] politique forestière
[Termes IGN] puits de carbone
[Termes IGN] série temporelle
[Termes IGN] surface forestière
[Vedettes matières IGN] Economie forestièreRésumé : (auteur) Key message: French forests exhibit the fastest relative changes across Europe. Growing stock increases faster than area, and is greatest in low-stocked private broadleaved forests. Past areal increases and current GS levels show positive effects on GS expansion, with GS increases hence expected to persist.
Context: Strong increases in growing stocks (GS) of European forests for decades remain poorly understood and of unknown duration. French forests showing the greatest relative changes across Europe form the investigated case study.
Aims: The magnitudes of net area, GS, and GS density (GSD) changes were evaluated across forest categories reflecting forest policy and land-use drivers. The roles of forest areal changes, GS and GSD levels on GS changes were investigated.
Methods: National Forest Inventory data were used to produce time series of area, GS and GSD across forest categories over 1976–2014, and exploratory causal models of GS changes.
Results: GS (+ 57%) increased three times faster than area, highlighting an advanced stage in the forest transition. Low-stocked private forests exhibited strong changes in GS/GSD, greatest in private broadleaved forests, stressing the contribution of returning forests on abandoned lands. Regression models demonstrated positive effects of both past areal increases and current GS, on GS expansion.
Conclusion: Aerial C-sink in French forests is expected to persist in future decades.Numéro de notice : A2020-647 Affiliation des auteurs : LIF+Ext (2020- ) Autre URL associée : vers HAL Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01003-6 Date de publication en ligne : 12/10/2020 En ligne : https://doi.org/10.1007/s13595-020-01003-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96075
in Annals of Forest Science [en ligne] > vol 77 n° 4 (December 2020) . - n° 98[article]Ancient forest statistics provide centennial perspective over the status and dynamics of forest area in France / Timothée Audinot in Annals of Forest Science [en ligne], vol 77 n° 3 (September 2020)
![]()
[article]
Titre : Ancient forest statistics provide centennial perspective over the status and dynamics of forest area in France Type de document : Article/Communication Auteurs : Timothée Audinot , Auteur ; Holger Wernsdörfer, Auteur ; Jean-Daniel Bontemps
, Auteur
Année de publication : 2020 Projets : ARBRE / AgroParisTech Article en page(s) : 24 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse diachronique
[Termes IGN] carte forestière
[Termes IGN] changement d'utilisation du sol
[Termes IGN] forêt de haute futaie
[Termes IGN] forêt privée
[Termes IGN] forêt publique
[Termes IGN] France (administrative)
[Termes IGN] politique forestière
[Termes IGN] surface forestière
[Termes IGN] taillis
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Key message: Centenary forest statistics informing major attributes of French forests were digitized, checked for consistency, and used to infer forest dynamics. Comparison to forest inventory data highlights increases in forest area and tree diversity, and substantial maturation of forests. Dataset access at https://doi.org/10.5281/zenodo.3739458
Context: The history of European forest dynamic remains fragmental. In France, the Daubrée statistics (1908) and agricultural statistics (1892, 1929) formed fundamental material to fill this gap.
Aims: Release, test, and summarize the digitalized dataset. Analyze long-term forest changes in forest area, composition, and structure.
Methods: Primary data on forest area across NUTS-3 geographic units, split by forest management and ownership categories and dominating tree species (Daubrée), were digitized and cross-compared. Centennial changes in forest attributes were assessed from modern forest inventory data.
Results: Cross-comparison revealed: (1) strong temporal consistency in forest changes over time, (2) systematic and interpretable biases in ownership/management categories between Daubrée and agricultural statistics. Strong shift from coppices to high forests, increased prevalence of private ownership, and constant proportion of broadleaf- and conifer-dominated forests were highlighted, with increased tree species diversity at country scale.
Conclusion: Ancient statistics are shown to play a major role in retrospective land-use and forest policy analysis.Numéro de notice : A2020-593 Affiliation des auteurs : LIF+Ext (2012-2019) Autre URL associée : vers HAL ouvert Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-00987-5 Date de publication en ligne : 05/08/2020 En ligne : https://doi.org/10.1007/s13595-020-00987-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95928
in Annals of Forest Science [en ligne] > vol 77 n° 3 (September 2020) . - 24 p.[article]How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study / Enrico Borgogno Mondino in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
![]()
[article]
Titre : How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study Type de document : Article/Communication Auteurs : Enrico Borgogno Mondino, Auteur ; Vanina Fissore, Auteur ; Michael J. Falkowski, Auteur ; Brian Palik, Auteur Année de publication : 2020 Article en page(s) : pp 4551 - 4569 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] auscultation topographique
[Termes IGN] diamètre des arbres
[Termes IGN] données dendrométriques
[Termes IGN] données lidar
[Termes IGN] feuillu
[Termes IGN] hauteur des arbres
[Termes IGN] image Landsat-OLI
[Termes IGN] inventaire forestier local
[Termes IGN] Minnesota (Etats-Unis)
[Termes IGN] modèle d'erreur
[Termes IGN] Pinophyta
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] surface forestière
[Termes IGN] télémètre laser aéroportéRésumé : (auteur) Aerial discrete return LiDAR (Light Detection And Ranging) technology (ALS – Aerial Laser Scanner) is now widely used for forest characterization due to its high accuracy in measuring vertical and horizontal forest structure. Random and systematic errors can still occur and these affect the native point cloud, ultimately degrading ALS data accuracy, especially when adopting datasets that were not natively designed for forest applications. A detailed understanding of how uncertainty of ALS data could affect the accuracy of derivable forest metrics (e.g. tree height, stem diameter, basal area) is required, looking for eventual error biases that can be possibly modelled to improve final accuracy. In this work a low-density ALS dataset, originally acquired by the State of Minnesota (USA) for non-forestry related purposes (i.e. topographic mapping), was processed attempting to characterize forest inventory parameters for the Cutfoot Sioux Experimental Forest (north-central Minnesota, USA). Since accuracy of estimates strictly depends on the applied species-specific dendrometric models a first required step was to map tree species over the forest. A rough classification, aiming at separating conifers from broadleaf, was achieved by processing a Landsat 8 OLI (Operational Land Imager) scene. ALS-derived forest metrics initially greatly overestimated those measured at the ground in 230 plots. Conversely, ALS-derived tree density was greatly underestimated. To reduce ALS uncertainty, trees belonging to the dominated plane were removed from the ground dataset, assuming that they could not properly be detected by low-density ALS measures. Consequently, MAE (Mean Absolute Error) values significantly decreased to 4.0 m for tree height and to 0.19 cm for diameter estimates. Remaining discrepancies were related to a bias affecting the native ALS point cloud, which was modelled and removed. Final MAE values were 1.32 m for tree height, 0.08 m for diameter, 8.5 m2 ha−1 for basal area, and 0.06 m for quadratic mean diameter. Specifically focusing on tree height and diameter estimates, the significance of differences between ground and ALS estimates was tested relative to the expected ‘best accuracy’. Results showed that after correction: 94.35% of tree height differences were lower than the corresponding reference value (2.86 m); 70% of tree diameter differences were lower than the corresponding reference value (4.5 cm for conifers and 6.8 cm for broadleaf). Finally, forest parameters were computed for the whole Cutfoot Sioux Experimental Forest. Main findings include: 1) all forest estimates based on a low-density ALS point cloud can be derived at plot level and not at a tree level; 2) tree height estimates obtained by low-density ALS point clouds at the plot level are highly reasonably accurate only after testing and modelling eventual error bias; 3) diameter, basal area, and quadratic mean diameter estimates have large uncertainties, suggesting the need for a higher point density and, probably, a better mapping of tree species (if possible) than achieved with a remote sensing-based approach. Numéro de notice : A2020-450 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723173 Date de publication en ligne : 20/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723173 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95535
in International Journal of Remote Sensing IJRS > vol 41 n° 12 (20 - 30 March 2020) . - pp 4551 - 4569[article]Generation of digital terrain model for forest areas using a new particle swarm optimization on LiDAR data / Behnaz Bigdeli in Survey review, vol 52 n° 371 (March 2020)
PermalinkPartition idéalisée et régionalisée de la composition en espèces ligneuses des forêts françaises / Jean-Daniel Bontemps in Ecoscience, vol 26 n° 4 (2019)
PermalinkChangements du stock de bois sur pied des forêts françaises : description, analyse et simulation sur des horizons temporels pluri-décennal (1975 - 2015) et séculaire à partir des données de l'inventaire forestier national et de statistiques anciennes / Anaïs Denardou-Tisserand (2019)
PermalinkUnmixing polarimetric radar images based on land cover type identified by higher resolution optical data before target decomposition: application to forest and bare soil / Sébastien Giordano in IEEE Transactions on geoscience and remote sensing, vol 56 n° 10 (October 2018)
PermalinkPermalinkOptimizing the spatial resolution of WorldView-2 imagery for discriminating forest vegetation at subspecies level in KwaZulu-Natal, South Africa / Romano Lottering in Geocarto international, vol 31 n° 7 - 8 (July - August 2016)
PermalinkEstimating forest and woodland aboveground biomass using active and passive remote sensing / Zhuoting Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 4 (April 2016)
Permalink