Descripteur
Termes descripteurs IGN > imagerie > image spatiale > image satellite > image Gaofen
image GaofenVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection / Xi Wu in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection Type de document : Article/Communication Auteurs : Xi Wu, Auteur ; Zhenwei Shi, Auteur ; Zhengxia Zou, Auteur Année de publication : 2021 Article en page(s) : pp 87 - 104 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] altitude
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection des nuages
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] information géographique
[Termes descripteurs IGN] latitude
[Termes descripteurs IGN] longitude
[Termes descripteurs IGN] modèle statistique
[Termes descripteurs IGN] neige
[Termes descripteurs IGN] Normalized Difference Snow IndexRésumé : (auteur) Geographic information such as the altitude, latitude, and longitude are common but fundamental meta-records in remote sensing image products. In this paper, it is shown that such a group of records provides important priors for cloud and snow detection in remote sensing imagery. The intuition comes from some common geographical knowledge, where many of them are important but are often overlooked. For example, it is generally known that snow is less likely to exist in low-latitude or low-altitude areas, and clouds in different geographic may have various visual appearances. Previous cloud and snow detection methods simply ignore the use of such information, and perform detection solely based on the image data (band reflectance). Due to the neglect of such priors, most of these methods are difficult to obtain satisfactory performance in complex scenarios (e.g., cloud-snow coexistence). In this paper, a novel neural network called “Geographic Information-driven Network (GeoInfoNet)” is proposed for cloud and snow detection. In addition to the use of the image data, the model integrates the geographic information at both training and detection phases. A “geographic information encoder” is specially designed, which encodes the altitude, latitude, and longitude of imagery to a set of auxiliary maps and then feeds them to the detection network. The proposed network can be trained in an end-to-end fashion with dense robust features extracted and fused. A new dataset called “Levir_CS” for cloud and snow detection is built, which contains 4,168 Gaofen-1 satellite images and corresponding geographical records, and is over 20× larger than other datasets in this field. On “Levir_CS”, experiments show that the method achieves 90.74% intersection over union of cloud and 78.26% intersection over union of snow. It outperforms other state of the art cloud and snow detection methods with a large margin. Feature visualizations also show that the method learns some important priors which is close to the common sense. The proposed dataset and the code of GeoInfoNet are available in https://github.com/permanentCH5/GeoInfoNet. Numéro de notice : A2021-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.023 date de publication en ligne : 22/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97187
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 87 - 104[article]A novel intelligent classification method for urban green space based on high-resolution remote sensing images / Zhiyu Xu in Remote sensing, vol 12 n° 22 (December 2020)
![]()
[article]
Titre : A novel intelligent classification method for urban green space based on high-resolution remote sensing images Type de document : Article/Communication Auteurs : Zhiyu Xu, Auteur ; Yi Zhou, Auteur ; Shixin Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 3845 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] arbre urbain
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] espace vert
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] milieu urbain
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] Pékin (Chine)
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] urbanismeRésumé : (auteur) The real-time, accurate, and refined monitoring of urban green space status information is of great significance in the construction of urban ecological environment and the improvement of urban ecological benefits. The high-resolution technology can provide abundant information of ground objects, which makes the information of urban green surface more complicated. The existing classification methods are challenging to meet the classification accuracy and automation requirements of high-resolution images. This paper proposed a deep learning classification method for urban green space based on phenological features constraints in order to make full use of the spectral and spatial information of green space provided by high-resolution remote sensing images (GaoFen-2) in different periods. The vegetation phenological features were added as auxiliary bands to the deep learning network for training and classification. We used the HRNet (High-Resolution Network) as our model and introduced the Focal Tversky Loss function to solve the sample imbalance problem. The experimental results show that the introduction of phenological features into HRNet model training can effectively improve urban green space classification accuracy by solving the problem of misclassification of evergreen and deciduous trees. The improvement rate of F1-Score of deciduous trees, evergreen trees, and grassland were 0.48%, 4.77%, and 3.93%, respectively, which proved that the combination of vegetation phenology and high-resolution remote sensing image can improve the results of deep learning urban green space classification. Numéro de notice : A2020-792 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223845 date de publication en ligne : 23/11/2020 En ligne : https://doi.org/10.3390/rs12223845 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96565
in Remote sensing > vol 12 n° 22 (December 2020) . - n° 3845[article]A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery / Niangang Jiao in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
![]()
[article]
Titre : A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery Type de document : Article/Communication Auteurs : Niangang Jiao, Auteur ; Feng Wang, Auteur ; Hongjian You, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 377 - 388 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] chaîne de traitement
[Termes descripteurs IGN] correction géométrique
[Termes descripteurs IGN] étalonnage géométrique
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] image Jilin
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] point d'appui
[Termes descripteurs IGN] précision géométrique (imagerie)Résumé : (auteur) To date, numerous Earth observation datasets from different types of satellites have been widely used in photogrammetric fields, including urban 3D modelling and geographic information systems. The development of small satellites has provided a new way to obtain repeated observations in a short period. However, compared with that of standard satellite imagery, the geometric performance of imagery from small satellites is relatively poor, restricting their photogrammetric applications. Traditional methods can improve the accuracy of optical images with the addition of well-distributed ground control points (GCPs), which require considerable financial and human resources. The collection of multi-view datasets is an alternative method for geometric processing without GCPs, but relies heavily on the stability and revisit period of satellite platforms. Therefore, this paper presents a framework for improving the geopositioning accuracy of multi-source datasets obtained from optical and synthetic aperture radar (SAR) satellites, and a novel heterogeneous weight strategy is proposed based on an analysis of the geometric error sources of SAR and optical images. The geometric performance of multi-source optical imagery from the Jilin-1 (JL-1) small satellite constellation is evaluated and analysed first, and then Gaofen-3 (GF-3) SAR images are calibrated based on statistical analysis for the production of virtual control points (VCPs). Based on our proposed heterogeneous weight strategy, multi-source optical and SAR images are integrated to improve the geopositioning accuracy. Experimental results indicate that our proposed model can achieve the best performance compared with other popular models, producing an accuracy of approximately 3 m in planimetry and 2 m in height, thereby providing a generic way to synergistically use multi-source remote sensing data. Numéro de notice : A2020-642 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.09.017 date de publication en ligne : 12/10/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.09.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96066
in ISPRS Journal of photogrammetry and remote sensing > vol 169 (November 2020) . - pp 377 - 388[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020111 SL Revue Centre de documentation Revues en salle Disponible 081-2020113 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods / Liheng Peng in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
![]()
[article]
Titre : Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods Type de document : Article/Communication Auteurs : Liheng Peng, Auteur ; Kai Liu, Auteur ; Jingjing Cao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 813 - 838 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] boosting adapté
[Termes descripteurs IGN] Chine, mer de
[Termes descripteurs IGN] classification et arbre de régression
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] écosystème
[Termes descripteurs IGN] extraction de la végétation
[Termes descripteurs IGN] île
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] image RapidEye
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] Rotation Forest classificationRésumé : (auteur) Mangrove forests are important constitutions for sustainable development of coastal ecosystems, and they are often mapped and monitored with remote sensing approaches. Satellite images allow detailed studies of the distribution and composition of mangrove forests, and therefore facilitate the management and conservation of the ecosystems. The combination of multiple types of satellite images with different spatial and spectral resolutions is helpful in mangrove forests extraction and mangrove species discrimination as it reduces sampling workload and increases classification accuracies. In this study, the 1.0-m-resolution Gaofen-2 (GF-2) and the 5.0-m-resolution RapidEye-4 (RE-4) satellite images, acquired in February 2017 and November 2016 respectively, were used with ensemble machine-learning and object-oriented methods for mangroves mapping at both the community and species levels of the Qi’ao Island, Zhuhai, China. First, the mangroves on the island were segmented from the GF-2 image on a large scale, and then they were extracted combining with their digital elevation model (DEM) data. Second, the GF-2 image was further processed on a fine scale, in which object-oriented features from both the GF-2 and RE-4 images were extracted for each mangrove species. Third, it is followed by the mangrove species classification process which involves three ensemble machine-learning methods: the adaptive boosting (AdaBoost), the random forest (RF) and the rotation forest (RoF). These three methods employed a classification and regression tree (CART) as the base classifier. The results show that the overall accuracy (OA) of mangrove area extraction on the Qi’ao Island with the auxiliary data, DEM, achieves 98.76% (Kappa coefficient (κ) = 0.9289). The features extracted by the GF-2 and RE-4 images were shown to be beneficial for mangrove species discrimination. A maximum improvement in the OA of approximately 8% and a κκ of approximately 0.10 were achieved when employing RoF (OA = 92.01%, κ = 0.9016). Ensemble-learning methods can significantly improve the classification accuracy of CART, and the use of a bagging scheme (RF and RoF) is shown as a better way to map mangrove species than adaptive boosting (AdaBoost). In addition, RoF performed well in mangrove species classification but it was not as robust as the RF, whose average OA and κκ were 80.59% and 0.7608, respectively, while the RoF’s were 77.45% and 0.7214, respectively, in the 10-fold cross-validation. Numéro de notice : A2020-212 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01431161.2019.1648907 date de publication en ligne : 30/07/2019 En ligne : https://doi.org/10.1080/01431161.2019.1648907 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94897
in International Journal of Remote Sensing IJRS > vol 41 n° 3 (15 - 22 janvier 2020) . - pp 813 - 838[article]Polarization dependence of azimuth cutoff from quad-pol SAR images / Huimin Li in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)
![]()
[article]
Titre : Polarization dependence of azimuth cutoff from quad-pol SAR images Type de document : Article/Communication Auteurs : Huimin Li, Auteur ; Alexis Mouche, Auteur ; He Wang, Auteur ; Justin E. Stopa, Auteur ; Bertrand Chapron, Auteur Année de publication : 2019 Article en page(s) : pp 9878 - 9887 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] angle d'incidence
[Termes descripteurs IGN] azimut
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Radarsat
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] polarisation croisée
[Termes descripteurs IGN] surface de la mer
[Termes descripteurs IGN] transformation non linéaire
[Termes descripteurs IGN] vagueRésumé : (auteur) Although basic understanding of the synthetic aperture radar (SAR) imaging mechanism of ocean waves has been achieved, challenges still remain. In this paper, a large number of quad-polarized SAR images are analyzed to help assess how the standard SAR imaging transformation applies to all polarization channels. Foremost, the azimuth cutoff, a parameter essentially governed by the detected wave motions, is today solely related to radar configuration and the ocean wave spectrum but not to the polarization configuration. As obtained, the analyses based on quad-polarized Radarsat-2 and Gaofen-3 products document the distinct dependence of azimuth cutoff on polarization and incidence angle. Especially for cross-polarized VH measurements, azimuth cutoff estimates are generally larger than copolarized HH ones, the latter already being larger than values estimated under VV configuration. This trend increases with the incidence angle. The systematic comparisons between SAR measurements and simulations further demonstrate that the present SAR nonlinear transformation may not properly take into account the differing coherence time associated with the multi-polarized observation of ocean scenes. In particular, to reproduce the large azimuth cutoff parameters of cross-polarized images, a reduced coherence time shall be expected. This measurable sensitivity shall enhance the capabilities of polarized SAR systems to precisely derive more ocean surface properties, especially the influence of wave breakers, by combining both the copolarization and cross-polarization measurements. Numéro de notice : A2019-601 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2929835 date de publication en ligne : 14/08/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2929835 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94602
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 12 (December 2019) . - pp 9878 - 9887[article]Global observations of ocean surface winds and waves using spaceborne synthetic aperture radar measurements / Huimin Li (2019)
PermalinkExploring the impact of seasonality on urban land-cover mapping using multi-season sentinel-1A and GF-1 WFV images in a subtropical monsoon-climate region / Tao Zhou in ISPRS International journal of geo-information, vol 7 n° 1 (January 2018)
PermalinkCombined calibration method based on rational function model for the Chinese GF-1 wide-field-of-view imagery / Taoyang Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 4 (April 2016)
Permalink