Descripteur



Etendre la recherche sur niveau(x) vers le bas
Directionally constrained fully convolutional neural network for airborne LiDAR point cloud classification / Congcong Wen in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
![]()
[article]
Titre : Directionally constrained fully convolutional neural network for airborne LiDAR point cloud classification Type de document : Article/Communication Auteurs : Congcong Wen, Auteur ; Lina Yang, Auteur ; Xiang Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 50 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] contrainte de direction
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] étiquetage sémantique
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] traitement de nuage de pointsRésumé : (auteur) Point cloud classification plays an important role in a wide range of airborne light detection and ranging (LiDAR) applications, such as topographic mapping, forest monitoring, power line detection, and road detection. However, due to the sensor noise, high redundancy, incompleteness, and complexity of airborne LiDAR systems, point cloud classification is challenging. Traditional point cloud classification methods mostly focus on the development of handcrafted point geometry features and employ machine learning-based classification models to conduct point classification. In recent years, the advances of deep learning models have caused researchers to shift their focus towards machine learning-based models, specifically deep neural networks, to classify airborne LiDAR point clouds. These learning-based methods start by transforming the unstructured 3D point sets to regular 2D representations, such as collections of feature images, and then employ a 2D CNN for point classification. Moreover, these methods usually need to calculate additional local geometry features, such as planarity, sphericity and roughness, to make use of the local structural information in the original 3D space. Nonetheless, the 3D to 2D conversion results in information loss. In this paper, we propose a directionally constrained fully convolutional neural network (D-FCN) that can take the original 3D coordinates and LiDAR intensity as input; thus, it can directly apply to unstructured 3D point clouds for semantic labeling. Specifically, we first introduce a novel directionally constrained point convolution (D-Conv) module to extract locally representative features of 3D point sets from the projected 2D receptive fields. To make full use of the orientation information of neighborhood points, the proposed D-Conv module performs convolution in an orientation-aware manner by using a directionally constrained nearest neighborhood search. Then, we design a multiscale fully convolutional neural network with downsampling and upsampling blocks to enable multiscale point feature learning. The proposed D-FCN model can therefore process input point cloud with arbitrary sizes and directly predict the semantic labels for all the input points in an end-to-end manner. Without involving additional geometry features as input, the proposed method demonstrates superior performance on the International Society for Photogrammetry and Remote Sensing (ISPRS) 3D labeling benchmark dataset. The results show that our model achieves a new state-of-the-art performance on powerline, car, and facade categories. Moreover, to demonstrate the generalization abilities of the proposed method, we conduct further experiments on the 2019 Data Fusion Contest Dataset. Our proposed method achieves superior performance than the comparing methods and accomplishes an overall accuracy of 95.6% and an average F1 score of 0.810. Numéro de notice : A2020-119 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.004 date de publication en ligne : 18/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94743
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 50 - 62[article]The direction-constrained k nearest neighbor query dealing with spatio-directional objects / Min-Joong Lee in Geoinformatica [en ligne], vol 20 n° 3 (July - September 2016)
![]()
[article]
Titre : The direction-constrained k nearest neighbor query dealing with spatio-directional objects Type de document : Article/Communication Auteurs : Min-Joong Lee, Auteur ; Dong-Wan Choi, Auteur ; SangYeon Kim, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 471 – 502 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes descripteurs IGN] analyse coût-avantage
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] contrainte de direction
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] index spatial
[Termes descripteurs IGN] objet géographique
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] requête spatialeRésumé : (auteur) Finding k nearest neighbor objects in spatial databases is a fundamental problem in many geospatial systems and the direction is one of the key features of a spatial object. Moreover, the recent tremendous growth of sensor technologies in mobile devices produces an enormous amount of spatio-directional (i.e., spatially and directionally encoded) objects such as photos. Therefore, an efficient and proper utilization of the direction feature is a new challenge. Inspired by this issue and the traditional k nearest neighbor search problem, we devise a new type of query, called the direction-constrained k nearest neighbor (DCkNN) query. The DCkNN query finds k nearest neighbors from the location of the query such that the direction of each neighbor is in a certain range from the direction of the query. We develop a new index structure called MULTI, to efficiently answer the DCkNN query with two novel index access algorithms based on the cost analysis. Furthermore, our problem and solution can be generalized to deal with spatio-circulant dimensional (such as a direction and circulant periods of time such as an hour, a day, and a week) objects. Experimental results show that our proposed index structure and access algorithms outperform two adapted algorithms from existing kNN algorithms. Numéro de notice : A2016-378 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article En ligne : http://dx.doi.org/10.1007/s10707-016-0245-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81145
in Geoinformatica [en ligne] > vol 20 n° 3 (July - September 2016) . - pp 471 – 502[article]