Descripteur
Documents disponibles dans cette catégorie (8)



Etendre la recherche sur niveau(x) vers le bas
Incremental road network update method with trajectory data and UAV remote sensing imagery / Jianxin Qin in ISPRS International journal of geo-information, vol 11 n° 10 (October 2022)
![]()
[article]
Titre : Incremental road network update method with trajectory data and UAV remote sensing imagery Type de document : Article/Communication Auteurs : Jianxin Qin, Auteur ; Wenjie Yang, Auteur ; Tao Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 502 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] données spatiotemporelles
[Termes IGN] extraction du réseau routier
[Termes IGN] image captée par drone
[Termes IGN] mise à jour de base de données
[Termes IGN] modèle de Markov caché
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routier
[Termes IGN] segmentation
[Termes IGN] trace au solRésumé : (auteur) GPS trajectory and remote sensing data are crucial for updating urban road networks because they contain critical spatial and temporal information. Existing road network updating methods, whether trajectory-based (TB) or image-based (IB), do not integrate the characteristics of both types of data. This paper proposed and implemented an incremental update method for rapid road network checking and updating. A composite update framework for road networks is established, which integrates trajectory data and UAV remote sensing imagery. The research proposed utilizing connectivity between adjacent matched points to solve the problem of updating problematic road segments in networks based on the features of the Hidden Markov Model (HMM) map-matching method in identifying new road segments. Deep learning is used to update the local road network in conjunction with the flexible and high-precision characteristics of UAV remote sensing. Additionally, the proposed method is evaluated against two baseline methods through extensive experiments based on real-world trajectories and UAV remote sensing imagery. The results show that our method has higher extraction accuracy than the TB method and faster updates than the IB method. Numéro de notice : A2022-791 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/ijgi11100502 Date de publication en ligne : 27/09/2022 En ligne : https://doi.org/10.3390/ijgi11100502 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101904
in ISPRS International journal of geo-information > vol 11 n° 10 (October 2022) . - n° 502[article]Uncertainty management for robust probabilistic change detection from multi-temporal Geoeye-1 imagery / Mahmoud Salah in Applied geomatics, vol 13 n° 2 (June 2021)
![]()
[article]
Titre : Uncertainty management for robust probabilistic change detection from multi-temporal Geoeye-1 imagery Type de document : Article/Communication Auteurs : Mahmoud Salah, Auteur Année de publication : 2021 Article en page(s) : pp 261 - 275 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] appariement d'histogramme
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de changement
[Termes IGN] Egypte
[Termes IGN] géoréférencement
[Termes IGN] image à très haute résolution
[Termes IGN] image Geoeye
[Termes IGN] image multitemporelle
[Termes IGN] incertitude des données
[Termes IGN] méthode robuste
[Termes IGN] modèle de Markov caché
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal artificiel
[Termes IGN] utilisation du solRésumé : (auteur) Robust approaches for image change detection (ICD) are essential for a range of large-scale applications. However, the uncertainties involved in such approaches have not been fully addressed. To investigate this problem, this paper proposes a new approach for change detection from multi-temporal very high resolution (VHR) satellite imagery based on uncertainty detection and management. First, two GeoEye-1 images of Giza urban area (Egypt), acquired in 2009 and 2019, have been geographically co-registered and their histograms have been matched. Second, a set of feature attributes have been generated from the co-registered images. Third, the support vector machine (SVM) algorithm has been adopted to classify the data into four classes: building, tree, road, and ground. In this regard, the co-registered images along with the generated attributes have been applied as input data for the SVM to calculate the probability of each pixel belonging to each class. After that, the probability images for both epochs have been compared to model the uncertainty of changes. The uncertainty places are then evaluated to estimate their likelihood of being change or no change. Finally, the obtained results have been compared with manually digitized change detection map. Compared with using the widely used post-classification comparison (PCC) approach, the results suggest that (1) the proposed method has improved the overall accuracy of change detection by 13%; (2) the class-accuracies have been improved by 35.63%; and (3) the achieved accuracies for the proposed approach are less variable. Whereas the standard deviation (SD) of the accuracies obtained for the proposed approach is 6.80, the SD of those obtained for the PCC approach is 35.50. Numéro de notice : A2021-412 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-020-00346-z Date de publication en ligne : 28/10/2020 En ligne : https://doi.org/10.1007/s12518-020-00346-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97737
in Applied geomatics > vol 13 n° 2 (June 2021) . - pp 261 - 275[article]Hidden Markov map matching based on trajectory segmentation with heading homogeneity / Ge Cui in Geoinformatica, vol 25 n° 1 (January 2021)
![]()
[article]
Titre : Hidden Markov map matching based on trajectory segmentation with heading homogeneity Type de document : Article/Communication Auteurs : Ge Cui, Auteur ; Wentao Bian, Auteur ; Xin Wang, Auteur Année de publication : 2021 Article en page(s) : pp 179 - 206 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] appariement de cartes
[Termes IGN] appariement de données localisées
[Termes IGN] modèle de Markov caché
[Termes IGN] réseau routier
[Termes IGN] segmentation
[Termes IGN] trajectographie par GPS
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Map matching is to locate GPS trajectories onto the road networks, which is an important preprocessing step for many applications based on GPS trajectories. Currently, hidden Markov model is one of the most widely used methods for map matching. However, both effectiveness and efficiency of conventional map matching methods based on hidden Markov model will decline in the dense road network, as the number of candidate road segments enormously increases around GPS point. To overcome the deficiency, this paper proposes a segment-based hidden Markov model for map matching. The proposed method first partitions GPS trajectory into several GPS sub-trajectories based on the heading homogeneity and length constraint; next, the candidate road segment sequences are searched out for each GPS sub-trajectory; last, GPS sub-trajectories and road segment sequences are matched in hidden Markov model, and the road segment sequences with the maximum probability is identified. A case study is conducted on a real GPS trajectory dataset, and the experiment result shows that the proposed method improves the effectiveness and efficiency of the conventional HMM map matching method. Numéro de notice : A2021-094 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00429-4 Date de publication en ligne : 02/01/2021 En ligne : https://doi.org/10.1007/s10707-020-00429-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96934
in Geoinformatica > vol 25 n° 1 (January 2021) . - pp 179 - 206[article]Road network simplification for location-based services / Abdeltawab M. Hendawi in Geoinformatica, vol 24 n° 4 (October 2020)
![]()
[article]
Titre : Road network simplification for location-based services Type de document : Article/Communication Auteurs : Abdeltawab M. Hendawi, Auteur ; John A. Stankovic, Auteur ; Ayman Taha, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 801 - 826 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme de Douglas-Peucker
[Termes IGN] appariement de cartes
[Termes IGN] appariement de données localisées
[Termes IGN] appariement de graphes
[Termes IGN] carte routière
[Termes IGN] compression de données
[Termes IGN] modèle de Markov caché
[Termes IGN] réseau routier
[Termes IGN] service fondé sur la position
[Termes IGN] simplification de contour
[Termes IGN] stockage de données
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Road-network data compression or simplification reduces the size of the network to occupy less storage with the aim to fit small form-factor routing devices, mobile devices, or embedded systems. Simplification (a) reduces the storage cost of memory and disks, and (b) reduces the I/O and communication overhead. There are several road network compression techniques proposed in the literature. These techniques are evaluated by their compression ratios. However, none of these techniques takes into consideration the possibility that the generated compressed data can be used directly in Map-matching operation which is an essential component for all location-aware services. Map-matching matches a measured latitude and longitude of an object to an edge in the road network graph. In this paper, we propose a novel simplification technique, named COMA, that (1) significantly reduces the size of a given road network graph, (2) achieves high map-matching quality on the simplified graph, and (3) enables the generated compressed road network graph to be used directly in map-matching and location-based applications without a need to decompress it beforehand. COMA smartly deletes those nodes and edges that will not affect the graph connectivity nor causing much of ambiguity in the map-matching of objects’ location. COMA employs a controllable parameter; termed a conflict factor C, whereby location aware services can trade the compression gain with map-matching accuracy at varying granularity. We show that the time complexity of our COMA algorithm is O(|N|log|N|). Intensive experimental evaluation based on a real implementation and data demonstrates that COMA can achieve about a 75% compression-ratio while preserving high map-matching quality. Road Network, Simplification, Compression, Spatial, Location, Performance, Accuracy, Efficiency, Scalability. Numéro de notice : A2020-495 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00406-x Date de publication en ligne : 01/05/2020 En ligne : https://doi.org/10.1007/s10707-020-00406-x Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96115
in Geoinformatica > vol 24 n° 4 (October 2020) . - pp 801 - 826[article]Nonparametric Bayesian learning for collaborative robot multimodal introspection / Xuefeng Zhou (2020)
![]()
Titre : Nonparametric Bayesian learning for collaborative robot multimodal introspection Type de document : Monographie Auteurs : Xuefeng Zhou, Auteur ; Hongmin Wu, Auteur ; Juan Rojas, Auteur ; et al., Auteur Editeur : Springer Nature Année de publication : 2020 Importance : 137 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-981-1562631-- Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage automatique
[Termes IGN] classification bayesienne
[Termes IGN] inférence
[Termes IGN] interface homme-machine
[Termes IGN] modèle de Markov caché
[Termes IGN] modèle mathématique
[Termes IGN] problème de Dirichlet
[Termes IGN] robotiqueRésumé : (éditeur) This open access book focuses on robot introspection, which has a direct impact on physical human–robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods. This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students. Note de contenu : 1- Introduction to robot introspection
2- Nonparametric Bayesian modeling of multimodal time series
3- Incremental learning robot task representation and identification
4- Nonparametric Bayesian method for robot anomaly monitoring
5- Nonparametric Bayesian method for robot anomaly diagnose
6- Learning policy for robot anomaly recovery based on robot introspectionNuméro de notice : 25965 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/MATHEMATIQUE Nature : Monographie DOI : 10.1007%2F978-981-15-6263-1 En ligne : https://link.springer.com/book/10.1007%2F978-981-15-6263-1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96557 A hidden Markov model for matching spatial networks / Benoit Costes in Journal of Spatial Information Science (JoSIS), n° 18 (2019)
PermalinkDistributed texture-based land cover classification algorithm using hidden Markov model for multispectral data / S. Jenicka in Survey review, vol 48 n° 351 (October 2016)
PermalinkPermalink