Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique systématique > Tracheophyta
TracheophytaSynonyme(s)plante vasculaire |
Documents disponibles dans cette catégorie (1197)


Etendre la recherche sur niveau(x) vers le bas
Climate and ungulate browsing impair regeneration dynamics in spruce-fir-beech forests in the French Alps / Mithila Unkule in Annals of Forest Science [en ligne], vol 79 n° 1 (2022)
![]()
[article]
Titre : Climate and ungulate browsing impair regeneration dynamics in spruce-fir-beech forests in the French Alps Type de document : Article/Communication Auteurs : Mithila Unkule, Auteur ; Christian Piedallu, Auteur ; Philippe Balandier, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] Alpes (France)
[Termes IGN] Cervidae
[Termes IGN] Fagus sylvatica
[Termes IGN] faune locale
[Termes IGN] hauteur des arbres
[Termes IGN] humidité du sol
[Termes IGN] Jura, massif du
[Termes IGN] Picea abies
[Termes IGN] placette d'échantillonnage
[Termes IGN] régénération (sylviculture)
[Termes IGN] sécheresse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Key message: Different components of water balance and temperature reduce density and height growth of saplings of Picea abies (L.) H. Karst (Norway spruce), Abies alba Mill. (silver fir) and Fagus sylvatica L. (European beech) in mixed uneven-aged forests in the French Alps and Jura mountains. Ungulate browsing is an additional pressure on fir and beech that could jeopardise the renewal of these species in the future.
Context: The uncertainty in tree recruitment rates raises questions about the factors affecting regeneration processes in forests. Factors such as climate, light, competition and ungulate browsing pressure may play an important role in determining regeneration, forest structures and thus future forest composition.
Aims: The objective of this study was to quantify sapling densities and height increments of spruce, fir and beech and to identify dominant environmental variables influencing them in mixed uneven-aged forests in the French Alps and Jura mountains.
Methods: Sapling height increment and density were recorded in 152 plots, and non-linear mixed models were obtained to establish relations between them and environmental factors known to affect regeneration, namely altitude, slope, aspect, canopy openness, soil characteristics, temperature, precipitation and ungulate browsing.
Results: Regeneration density, varying from 0 to 7 saplings per m 2, decreased with sapling height and was also negatively affected for spruce by PET, but positively for fir by precipitation and for beech by mean annual soil water content. Height increment reached up to 50 cm annually, increasing with sapling height and canopy openness and decreasing under high maximum summer temperatures for spruce and beech. The statistical effect of different environmental variables varied slightly among species but trends were quite similar. Additionally, ungulate browsing was high, with fir being the most intensely browsed, followed closely by beech, while spruce was rarely browsed.
Conclusions: All these results suggest that more temperature warming and a decrease in water availability could negatively impact sapling growth and density in the three species, with possible reduction of forest renewal fluxes. The observed increase of ungulate populations leading to increased browsing could be particularly detrimental to fir saplings.Numéro de notice : A2022-509 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01126-y Date de publication en ligne : 23/03/2022 En ligne : https://doi.org/10.1186/s13595-022-01126-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101045
in Annals of Forest Science [en ligne] > vol 79 n° 1 (2022) . - n° 11[article]Desiccation does not increase frost resistance of pedunculate oak (Quercus robur L.) seeds / Paweł Chmielarz in Annals of Forest Science [en ligne], vol 79 n° 1 (2022)
![]()
[article]
Titre : Desiccation does not increase frost resistance of pedunculate oak (Quercus robur L.) seeds Type de document : Article/Communication Auteurs : Paweł Chmielarz, Auteur ; Jan Suszka, Auteur ; Mikołaj Krzysztof Wawrzyniak, Auteur Année de publication : 2022 Article en page(s) : n° 3 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] croissance des arbres
[Termes IGN] gelée
[Termes IGN] germination
[Termes IGN] Quercus pedunculata
[Termes IGN] semence
[Termes IGN] stockage
[Termes IGN] teneur en eau de la végétation
[Vedettes matières IGN] BotaniqueRésumé : (Auteur) Key message: Decreasing acorns moisture content does not significantly increase the frost resistance of pedunculate oak seeds. Slight reduction in acorn moisture content below the relatively high, optimal level decreased seed survival at temperatures below − 5 °C. The limiting temperature for pedunculate oak’s acorns below which they lose their ability to germinate is about − 10 °C.
Context: Seed moisture content plays an important role in successful seed storage of many species, as desiccation increases frost resistance; however, oak seeds tolerate desiccation only to a very small extent.
Aims: In our study, we examined the impact of decreasing moisture content in acorns of pedunculate oak (Quercus robur L.) on their frost resistance (below − 3 °C) and the growth of seedling derived from frozen seeds.
Methods: Germination and seedling emergence of individual seeds, as well as the dry mass of their 3-month-old seedlings, were measured after acorn desiccation (24–40%, fresh weight basis) and desiccation followed by freezing at temperatures from − 3 °C to − 18 °C for 2 weeks.
Results: Decreasing acorns moisture content did not significantly increase the frost resistance of pedunculate oak seeds. The lowest temperature at which at least half seeds remain viable was − 10 °C. Slight acorns desiccation had only a small positive effect on seeds frozen below − 11 °C (down to − 13 °C), but in this case (acorn moisture content of 33%), low germinability after freezing made storage uneconomic because of the high mortality of seeds. Germinated seeds after desiccation and freezing showed no significant difference in later growth.
Conclusion: Fresh pedunculate oak seed can survive freezing temperature down to − 10 °C and produce good quality seedlings. Temperatures around − 11° to − 13 °C are near lethal to acorns and significantly reduce their viability. Overall, desiccation does not increase their frost resistance; therefore, in practice, it is important to keep acorns during a cold storage in the highly hydrated state.Numéro de notice : A2022-069 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01121-3 Date de publication en ligne : 24/02/2022 En ligne : https://doi.org/10.1186/s13595-022-01121-3 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100014
in Annals of Forest Science [en ligne] > vol 79 n° 1 (2022) . - n° 3[article]Climatic sensitivities derived from tree rings improve predictions of the forest vegetation simulator growth and yield model / Courtney L. Giebink in Forest ecology and management, vol 517 (1 August 2022)
![]()
[article]
Titre : Climatic sensitivities derived from tree rings improve predictions of the forest vegetation simulator growth and yield model Type de document : Article/Communication Auteurs : Courtney L. Giebink, Auteur ; R. Justin DeRose, Auteur ; Mark Castle, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120256 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] cerne
[Termes IGN] croissance des arbres
[Termes IGN] gestion forestière
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] Picea (genre)
[Termes IGN] Pinus ponderosa
[Termes IGN] Pseudotsuga menziesii
[Termes IGN] puits de carbone
[Termes IGN] rendement
[Termes IGN] Utah (Etas-Unis)
[Termes IGN] variation saisonnière
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Forest management has the potential to contribute to the removal of greenhouse gasses from the atmosphere via carbon sequestration and storage. To identify management actions that will maximize carbon removal and storage over the long term, models are needed that accurately and realistically represent forest responses to changing climate. The most widely used growth and yield model in the United States (U.S.), the Forest Vegetation Simulator (FVS), which also forms the basis for several forest carbon calculators, does not currently include the direct effect of climate variation on tree growth. We incorporated the effects of climate on tree diameter growth by combining tree-ring data with forest inventory data to parameterize a suite of alternative models characterizing the growth of three dominant tree species in the arid and moisture-limited state of Utah. These species, Pinus ponderosa Dougl. ex Laws, Pseudotsuga menziesii var. glauca Mayr (Franco), and Picea engelmannii Parry ex Engelm., encompass the full elevational range of montane forest types. The alternative models we considered differed progressively from the current FVS large-tree diameter growth model, first by changing to an annual time step, then by adding interannual climate effects, followed by model simplification (removal of predictors), and finally, complexification, including effects of spatial variation in climate and two-way interactions between predictors. We validated diameter growth predictions from these models with independent observations, and evaluated model performance in terms of accuracy, precision, and bias. We then compared predictions of future growth made by the existing large-tree diameter growth model used in FVS, i.e., without climate effects, to those of our updated models, including those with climate effects. We found that simpler models of tree growth outperform the current FVS model, and that the incorporation of climate effects improves model performance for two out of three species, in which growth is currently overpredicted by FVS. Diameter growth projected with improved, climate-sensitive models is less than the future tree growth projected by the current climate-insensitive FVS model. Tree rings can be used to identify and incorporate drivers of growth variation into a stand-level growth and yield model, giving more accurate predictions of the carbon uptake potential of forests under climate change. Numéro de notice : A2022-390 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120256 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120256 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100681
in Forest ecology and management > vol 517 (1 August 2022) . - n° 120256[article]Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure / Alejandro Rodríguez-Vivancos in European Journal of Forest Research, vol 141 n° 3 (June 2022)
![]()
[article]
Titre : Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure Type de document : Article/Communication Auteurs : Alejandro Rodríguez-Vivancos, Auteur ; José Antonio Manzanera, Auteur ; Susana Martín-Fernández, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 447 - 465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de variance
[Termes IGN] Bootstrap (statistique)
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur d'échantillon
[Termes IGN] Espagne
[Termes IGN] forêt inéquienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pinus sylvestris
[Termes IGN] régression linéaire
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] structure-from-motionRésumé : (auteur) Airborne Laser Scanning (ALS) is widely extended in forest evaluation, although photogrammetry-based Structure from Motion (SfM) has recently emerged as a more affordable alternative. Return cloud metrics and their normalization using different typologies of Digital Terrain Models (DTM), either derived from SfM or from private or free access ALS, were evaluated. In addition, the influence of the return density (0.5–6.5 returns m-2) and the sampling intensity (0.3–3.4%) on the estimation of the most common stand structure variables were also analysed. The objective of this research is to gather all these questions in the same document, so that they serve as support for the planning of forest management. This study analyses the variables collected from 60 regularly distributed circular plots (r = 18 m) in a 150-ha of uneven-aged Scots pine stand. Results indicated that both ALS and SfM can be equally used to reduce the sampling error in the field inventories, but they showed differences when estimating the stand structure variables. ALS produced significantly better estimations than the SfM metrics for all the variables of interest, as well as the ALS-based normalization. However, the SfM point cloud produced better estimations when it was normalized with its own DTM, except for the dominant height. The return density did not have significant influence on the estimation of the stand structure variables in the range studied, while higher sampling intensities decreased the estimation errors. Nevertheless, these were stabilized at certain intensities depending on the variance of the stand structure variable. Numéro de notice : A2022-417 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s10342-022-01447-7 Date de publication en ligne : 12/04/2022 En ligne : https://doi.org/10.1007/s10342-022-01447-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100780
in European Journal of Forest Research > vol 141 n° 3 (June 2022) . - pp 447 - 465[article]Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve / Michael Lechner in Remote sensing, vol 14 n° 11 (June-1 2022)
![]()
[article]
Titre : Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve Type de document : Article/Communication Auteurs : Michael Lechner, Auteur ; Alena Dostalova, Auteur ; Markus Hollaus, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2687 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] analyse harmonique
[Termes IGN] Autriche
[Termes IGN] biosphère
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] espèce végétale
[Termes IGN] feuillu
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] nébulosité
[Termes IGN] phénologie
[Termes IGN] Pinophyta
[Termes IGN] rapport signal sur bruit
[Termes IGN] réserve forestièreRésumé : (auteur) Microwave and optical imaging methods react differently to different land surface parameters and, thus, provide highly complementary information. However, the contribution of individual features from these two domains of the electromagnetic spectrum for tree species classification is still unclear. For large-scale forest assessments, it is moreover important to better understand the domain-specific limitations of the two sensor families, such as the impact of cloudiness and low signal-to-noise-ratio, respectively. In this study, seven deciduous and five coniferous tree species of the Austrian Biosphere Reserve Wienerwald (105,000 ha) were classified using Breiman’s random forest classifier, labeled with help of forest enterprise data. In nine test cases, variations of Sentinel-1 and Sentinel-2 imagery were passed to the classifier to evaluate their respective contributions. By solely using a high number of Sentinel-2 scenes well spread over the growing season, an overall accuracy of 83.2% was achieved. With ample Sentinel-2 scenes available, the additional use of Sentinel-1 data improved the results by 0.5 percentage points. This changed when only a single Sentinel-2 scene was supposedly available. In this case, the full set of Sentinel-1-derived features increased the overall accuracy on average by 4.7 percentage points. The same level of accuracy could be obtained using three Sentinel-2 scenes spread over the vegetation period. On the other hand, the sole use of Sentinel-1 including phenological indicators and additional features derived from the time series did not yield satisfactory overall classification accuracies (55.7%), as only coniferous species were well separated. Numéro de notice : A2022-540 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14112687 Date de publication en ligne : 03/06/2022 En ligne : https://doi.org/10.3390/rs14112687 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101103
in Remote sensing > vol 14 n° 11 (June-1 2022) . - n° 2687[article]Dendroclimatological analysis of fir (A. borisii-regis) in Greece in the frame of climate change investigation / Aristeidis Kastridis in Forests, vol 13 n° 6 (June 2022)
PermalinkDirect and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system / Eric Hyyppä in Science of remote sensing, vol 5 (June 2022)
PermalinkFunding for planting missing species financially supports the conversion from pure even-aged to uneven-aged mixed forests and climate change mitigation / Joerg Roessinger in European Journal of Forest Research, vol 141 n° 3 (June 2022)
PermalinkSpecies level classification of Mediterranean sparse forests-maquis formations using Sentinel-2 imagery / Semiha Demirbaş Çağlayana in Geocarto international, vol 37 n° 6 (June 2022)
PermalinkUncertainty of biomass stocks in Spanish forests: a comprehensive comparison of allometric equations / Aitor Ameztegui in European Journal of Forest Research, vol 141 n° 3 (June 2022)
PermalinkExcelling the progenitors: Breeding for resistance to Dutch elm disease from moderately resistant and susceptible native stock / Jorge Dominguez in Forest ecology and management, vol 511 (15 May 2022)
PermalinkClassification of Eucalyptus plantation Site Index (SI) and Mean Annual Increment (MAI) prediction using DEM-based geomorphometric and climatic variables in Brazil / Aliny Aparecida Dos Reis in Geocarto international, vol 37 n° 5 ([01/05/2022])
PermalinkEffects of climate and drought on stem diameter growth of urban tree species / Vjosa Dervishi in Forests, vol 13 n° 5 (May 2022)
PermalinkSignificant loss of ecosystem services by environmental changes in the Mediterranean coastal area / Adriano Conte in Forests, vol 13 n° 5 (May 2022)
PermalinkUnveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)
Permalink