Descripteur
Documents disponibles dans cette catégorie (34)



Etendre la recherche sur niveau(x) vers le bas
Deep learning detects invasive plant species across complex landscapes using Worldview-2 and Planetscope satellite imagery / Thomas A. Lake in Remote sensing in ecology and conservation, vol 8 n° 6 (December 2022)
![]()
[article]
Titre : Deep learning detects invasive plant species across complex landscapes using Worldview-2 and Planetscope satellite imagery Type de document : Article/Communication Auteurs : Thomas A. Lake, Auteur ; Ryan D. Briscoe Runquist, Auteur ; David A. Moeller, Auteur Année de publication : 2022 Article en page(s) : pp 875 - 889 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] espèce exotique envahissante
[Termes IGN] image Worldview
[Termes IGN] PlanetScope
[Termes IGN] série temporelleRésumé : (auteur) Effective management of invasive species requires rapid detection and dynamic monitoring. Remote sensing offers an efficient alternative to field surveys for invasive plants; however, distinguishing individual plant species can be challenging especially over geographic scales. Satellite imagery is the most practical source of data for developing predictive models over landscapes, but spatial resolution and spectral information can be limiting. We used two types of satellite imagery to detect the invasive plant, leafy spurge (Euphorbia virgata), across a heterogeneous landscape in Minnesota, USA. We developed convolutional neural networks (CNNs) with imagery from Worldview-2 and Planetscope satellites. Worldview-2 imagery has high spatial and spectral resolution, but images are not routinely taken in space or time. By contrast, Planetscope imagery has lower spatial and spectral resolution, but images are taken daily across Earth. The former had 96.1% accuracy in detecting leafy spurge, whereas the latter had 89.9% accuracy. Second, we modified the CNN for Planetscope with a long short-term memory (LSTM) layer that leverages information on phenology from a time series of images. The detection accuracy of the Planetscope LSTM model was 96.3%, on par with the high resolution, Worldview-2 model. Across models, most false-positive errors occurred near true populations, indicating that these errors are not consequential for management. We identified that early and mid-season phenological periods in the Planetscope time series were key to predicting leafy spurge. Additionally, green, red-edge and near-infrared spectral bands were important for differentiating leafy spurge from other vegetation. These findings suggest that deep learning models can accurately identify individual species over complex landscapes even with satellite imagery of modest spatial and spectral resolution if a temporal series of images is incorporated. Our results will help inform future management efforts using remote sensing to identify invasive plants, especially across large-scale, remote and data-sparse areas. Numéro de notice : A2023-033 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1002/rse2.288 En ligne : https://doi.org/10.1002/rse2.288 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102295
in Remote sensing in ecology and conservation > vol 8 n° 6 (December 2022) . - pp 875 - 889[article]Discriminating pure Tamarix species and their putative hybrids using field spectrometer / Solomon G. Tesfamichael in Geocarto international, vol 37 n° 25 ([01/12/2022])
![]()
[article]
Titre : Discriminating pure Tamarix species and their putative hybrids using field spectrometer Type de document : Article/Communication Auteurs : Solomon G. Tesfamichael, Auteur ; Solomon W. Newete, Auteur ; Elhadi Adam, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 7733 - 7752 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Afrique du sud (état)
[Termes IGN] apprentissage automatique
[Termes IGN] canopée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] espèce exotique envahissante
[Termes IGN] essence indigène
[Termes IGN] Extreme Gradient Machine
[Termes IGN] feuille (végétation)
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] image Worldview
[Termes IGN] spectroradiomètre
[Termes IGN] Tamarix (genre)Résumé : (auteur) South Africa is home to a native Tamarix species, while two were introduced in the early 1900s to mitigate the effects of mining on soil. The introduced species have spread to other ecosystems resulting in ecological deteriorations. The problem is compounded by hybridization of the species making identification between the native and exotic species difficult. This study investigated the potential of remote sensing in identifying native, non-native and hybrid Tamarix species recorded in South Africa. Leaf- and canopy-level classifications of the species were conducted using field spectroradiometer data that provided two inputs: original hyperspectral data and bands simulated according to Landsat-8, Sentinel-2, SPOT-6 and WorldView-3. The original hyperspectral data yielded high accuracies for leaf- and plot-level discriminations (>90%), while promising accuracies were also obtained using Landsat-8, Sentinel-2 and Worldview-3 simulations (>75%). These findings encourage for investigating the performance of actual space-borne multispectral data in classifying the species. Numéro de notice : A2022-928 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1983033 Date de publication en ligne : 27/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1983033 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102661
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7733 - 7752[article]Detection and biomass estimation of phaeocystis globosa blooms off Southern China from UAV-based hyperspectral measurements / Xue Li in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
![]()
[article]
Titre : Detection and biomass estimation of phaeocystis globosa blooms off Southern China from UAV-based hyperspectral measurements Type de document : Article/Communication Auteurs : Xue Li, Auteur ; Shaoling Shang, Auteur ; Zhongping Lee, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4200513 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algue
[Termes IGN] biomasse
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] chlorophylle
[Termes IGN] couleur de l'océan
[Termes IGN] espèce exotique envahissante
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] plancton
[Termes IGN] réflectanceRésumé : (auteur) Phaeocystis globosa (P. globosa) is a unique causative species of harmful algal blooms, which can form gelatinous colonies. We, for the first time, used unmanned aerial vehicle (UAV) measurements to identify P. globosa blooms and to quantify the biomass. Based on in situ measured remote sensing reflectance ( Rrs ), it is found that, for P. globosa blooms, the maximum of the second-derivative ( dλ2Rrs ) of Rrs(λ) in the 460–480-nm domain is beyond 466 nm. An analysis of the absorption properties from algal cultures suggested that this feature comes from the absorption of chlorophyll c3 (Chl −/c3 ) around 466 nm, a prominent feature of P. globosa. This position of dλ2Rrs maximum was, thus, selected as the criterion for P. globosa identification. The spatial extent of P. globosa blooms in two bays off southern China was then mapped by applying the criterion to UAV-measured Rrs . Twelve out of 16 UAV and in situ match-up stations were consistently identified as dominated by P. globosa, indicating the accuracy of 75%. Furthermore, using localized empirical models, chlorophyll a (Chl −/a ) concentration and colony numbers of P. globosa were estimated from UAV-derived Rrs , where P. globosa colonies were found in a range of ~3–37 gel matrix/L, indicating the occurrence of weak to moderate P. globosa blooms during the surveys. The promising results suggest a high potential for detection and quantification of P. globosa blooms in near-shore bays or harbors using UAV-based hyperspectral remote sensing, where conventional ocean color satellite remote sensing runs into difficulties. Numéro de notice : A2022-025 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3051466 Date de publication en ligne : 26/01/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3051466 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99254
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 1 (January 2022) . - n° 4200513[article]Forest inventory-based assessments of the invasion risk of Pseudotsuga menziesii (Mirb.) Franco and Quercus rubra L. in Germany / A. Bindewald in European Journal of Forest Research, vol 140 n° 4 (August 2021)
![]()
[article]
Titre : Forest inventory-based assessments of the invasion risk of Pseudotsuga menziesii (Mirb.) Franco and Quercus rubra L. in Germany Type de document : Article/Communication Auteurs : A. Bindewald, Auteur ; S. Miocic, Auteur ; A. Wedler, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 883 - 899 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] écosystème forestier
[Termes IGN] espèce exotique envahissante
[Termes IGN] gestion forestière
[Termes IGN] habitat forestier
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Pseudotsuga menziesii
[Termes IGN] Quercus rubra
[Termes IGN] régénération (sylviculture)
[Termes IGN] zone tampon
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) In Europe, some non-native tree species (NNT) are classified as invasive because they have spread into semi-natural habitats. Yet, available risk assessment protocols are often based on a few limited case studies with unknown representativeness and uncertain data quality. This is particularly problematic when negative impacts of NNT are confined to particular ecosystems or processes, whilst providing valuable ecosystem services elsewhere. Here, we filled this knowledge gap and assessed invasion risks of two controversially discussed NNT in Germany (Quercus rubra L., Pseudotsuga menziesii (Mirb.) Franco) for broad forest types using large scale inventory data. For this purpose, establishment success of natural regeneration was quantified in terms of cover and height classes. The current extent of spread into protected forest habitats was investigated in south-west Germany using regional data. Establishment was most successful at sites where the NNT are abundant in the canopy and where sufficient light is available in the understory. Natural regeneration of both NNT was observed in 0.3% of the total area of protected habitats. In forest habitats with sufficient light in the understory and competitively inferior tree species, there is a risk that Douglas fir and red oak cause changes in species composition in the absence of management interventions. The installation of buffer zones and regular removal of unwanted regeneration could minimize such risks for protected areas. Our study showed that forest inventories can provide valuable data for comparing the establishment risk of NNT amongst ecosystem types, regions or jurisdictions. This information can be improved by recording the abundance and developmental stage of widespread NNT, particularly in semi-natural ecosystems. Numéro de notice : A2021-718 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-021-01373-0 En ligne : https://doi.org/10.1007/s10342-021-01373-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98635
in European Journal of Forest Research > vol 140 n° 4 (August 2021) . - pp 883 - 899[article]Improving the unsupervised mapping of riparian bugweed in commercial forest plantations using hyperspectral data and LiDAR / Kabir Peerbhay in Geocarto international, vol 36 n° 4 ([01/03/2021])
![]()
[article]
Titre : Improving the unsupervised mapping of riparian bugweed in commercial forest plantations using hyperspectral data and LiDAR Type de document : Article/Communication Auteurs : Kabir Peerbhay, Auteur ; Onisimo Mutanga, Auteur ; Romano Lottering, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 465 - 480 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte de la végétation
[Termes IGN] classification non dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] espèce exotique envahissante
[Termes IGN] forêt ripicole
[Termes IGN] image AISA+
[Termes IGN] image hyperspectrale
[Termes IGN] précision cartographique
[Termes IGN] semis de pointsRésumé : (auteur) Accurate spatial information on the location of invasive alien plants (IAPs) in riparian environments is critical to fulfilling a comprehensive weed management regime. This study aimed to automatically map the occurrence of riparian bugweed (Solanum mauritianum) using airborne AISA Eagle hyperspectral data (393 nm–994 nm) in conjunction with LiDAR derived height. Utilising an unsupervised random forest (RF) classification approach and Anselin local Moran’s I clustering, results indicate that the integration of LiDAR with minimum noise fraction (MNF) produce the best detection rate (DR) of 88%, the lowest false positive rate (FPR) of 7.14% and an overall mapping accuracy of 83% for riparian bugweed. In comparison, utilising the original hyperspectral wavebands with and without LiDAR produced lower DRs and higher FPRs with overall accuracies of 79% and 68% respectively. This research demonstrates the potential of combining spectral information with LiDAR to accurately map IAPs using an automated unsupervised RF anomaly detection framework. Numéro de notice : A2021-163 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614101 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1614101 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97084
in Geocarto international > vol 36 n° 4 [01/03/2021] . - pp 465 - 480[article]Range-wide demographic patterns in European forests along climatic marginality gradients : An approach using national forest inventories / Alexandre Changenet (2021)
PermalinkUsing remote sensing and modeling to monitor and understand harmful algal blooms. Application to Karaoun Reservoir (Lebanon) / Najwa Sharaf (2021)
PermalinkConvolutional Neural Networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery / Teja Kattenborn in Remote sensing in ecology and conservation, vol 6 n° 4 (December 2020)
PermalinkDevelopment and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping / Alvin B. Baloloy in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkTowards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa / Cecilia Masemola in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkBiodiversity conservation in cities: Defining habitat analogues for plant species of conservation interest / M. Itani in Plos one, vol 15 n° 6 (June 2020)
PermalinkXylem anatomy of Robinia pseudoacacia L. and Quercus robur L. is differently affected by climate in a temperate alluvial forest / Paola Nola in Annals of Forest Science, Vol 77 n° 1 (March 2020)
PermalinkPermalinkAilanthus altissima mapping from multi-temporal very high resolution satellite images / Cristina Tarantino in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
PermalinkPermalink