Descripteur
Termes IGN > environnement > écologie > phytoécologie > dynamique de la végétation
dynamique de la végétation |
Documents disponibles dans cette catégorie (58)



Etendre la recherche sur niveau(x) vers le bas
Fertilization modifies forest stand growth but not stand density: consequences for modelling stand dynamics in a changing climate / Hans Pretzsch in Forestry, an international journal of forest research, vol 95 n° 2 (April 2022)
![]()
[article]
Titre : Fertilization modifies forest stand growth but not stand density: consequences for modelling stand dynamics in a changing climate Type de document : Article/Communication Auteurs : Hans Pretzsch, Auteur ; Peter Biber, Auteur Année de publication : 2022 Article en page(s) : pp 187 - 200 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] allométrie
[Termes IGN] analyse comparative
[Termes IGN] azote
[Termes IGN] changement climatique
[Termes IGN] croissance des arbres
[Termes IGN] densité du peuplement
[Termes IGN] dynamique de la végétation
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] gestion forestière
[Termes IGN] modèle statistique
[Termes IGN] nutriment végétal
[Termes IGN] Pinus sylvestris
[Termes IGN] puits de carbone
[Vedettes matières IGN] ForesterieRésumé : (auteur) Knowledge of the maximum forest stand density and the self-thinning process is important for understanding, modelling and scheduling thinnings in silviculture. The upper trajectories of stem number, N, vs mean diameter, dq or mean tree volume vs stem number are often used for quantifying maximum stand density. The long debate about how site conditions modify these relationships is presently revived due to global change. A crucial question is whether environmental conditions alter the trajectories themselves or just the velocity at which stands move along them. Our contribution is based on fully stocked plots from long-term Scots pine (Pinus sylvestris L.) fertilization experiments along an ecological gradient in South Germany. This allows us to compare the self-thinning trajectories of fertilized and unfertilized plots under different environmental conditions. We can show that repeated fertilization with nitrogen did not change the N ~ dq trajectories. Assuming that fertilization affects forests in a similar way as an ongoing atmospheric N-deposition, this means that presently growth, mortality, and volume accumulation in forest stands proceed faster in time but still follow the same N ~ dq allometric trajectories. Furthermore, we found that the level of the self-thinning line generally increases with the annual precipitation. The allometric self-thinning exponent, however, did not respond to environmental conditions. Finally, we quantitatively demonstrate and discuss the implications and consequences of the results regarding understanding and modelling forest stand dynamics, carbon sequestration and the development and adaptation of silvicultural guidelines in view of climate change. Numéro de notice : A2022-261 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1093/forestry/cpab036 Date de publication en ligne : 30/07/2021 En ligne : https://doi.org/10.1093/forestry/cpab036 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100249
in Forestry, an international journal of forest research > vol 95 n° 2 (April 2022) . - pp 187 - 200[article]Potential of Bayesian formalism for the fusion and assimilation of sequential forestry data in time and space / Cheikh Mohamedou in Canadian Journal of Forest Research, Vol 52 n° 4 (April 2022)
![]()
[article]
Titre : Potential of Bayesian formalism for the fusion and assimilation of sequential forestry data in time and space Type de document : Article/Communication Auteurs : Cheikh Mohamedou, Auteur ; Annika S. Kangas, Auteur ; Alireza Hamedianfar, Auteur ; Jari Vauhkonen, Auteur Année de publication : 2022 Article en page(s) : pp 439 - 449 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données spatiotemporelles
[Termes IGN] dynamique de la végétation
[Termes IGN] estimation bayesienne
[Termes IGN] fusion de données
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] série temporelle
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Forest resource assessments based on multi-source and multi-temporal data have become more common. Therefore, enhancing the prediction capabilities of forestry dynamics by efficiently pooling and analyzing time-series and spatial sequential data is now more pivotal. Bayesian filtering and smoothing provide a well-defined formalism for the fusion or assimilation of various data. We ascertained how often the generic, standardized Bayesian framework is used in the scientific literature and whether such an approach is beneficial for forestry applications. A review of the literature showed that the use of Bayesian methods appears to be less common in forestry than in other disciplines, particularly remote sensing. Specifically, time-series analyses were found to favor ad hoc methods. Our review did not reveal strong numeric evidence for better performance by the various Bayesian approaches, but this result may be partly due to the challenge in comparing a variety of methods for different prediction tasks. We identified methodological challenges related to assimilating predictions of forest development; in particular, combining modelled growth with disturbances due to both forest operations and natural phenomena. Nevertheless, the Bayesian frameworks provide possibilities to efficiently combine and update prior and posterior predictive distributions and derive related uncertainty measures that appear under-utilized in forestry. Numéro de notice : A2022-315 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1139/cjfr-2021-0145 Date de publication en ligne : 17/01/2022 En ligne : https://doi.org/10.1139/cjfr-2021-0145 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100415
in Canadian Journal of Forest Research > Vol 52 n° 4 (April 2022) . - pp 439 - 449[article]Monitoring forest-savanna dynamics in the Guineo-Congolian transition area of the centre region of Cameroon / Le Bienfaiteur Sagang Takougoum (2022)
![]()
Titre : Monitoring forest-savanna dynamics in the Guineo-Congolian transition area of the centre region of Cameroon Type de document : Thèse/HDR Auteurs : Le Bienfaiteur Sagang Takougoum, Auteur ; Bonaventure Sonké, Directeur de thèse ; Nicolas Barbier, Directeur de thèse Editeur : Yaoundé : Université de Yaoundé Année de publication : 2022 Importance : 166 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l'Université de Yaoundé 1, Spécialité Botanique-EcologieLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] Cameroun
[Termes IGN] carte d'utilisation du sol
[Termes IGN] carte de la végétation
[Termes IGN] classification dirigée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] dynamique de la végétation
[Termes IGN] écotone
[Termes IGN] flore locale
[Termes IGN] forêt
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] incendie de forêt
[Termes IGN] modèle statistique
[Termes IGN] savane
[Termes IGN] surveillance forestièreIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Understanding the effects of global change (combining anthropic and climatic pressures) on biome distribution needs innovative approaches allowing to address the large spatial scales involved and the scarcity of available ground data. Characterizing vegetation dynamics at landscape to regional scale requires both a high level of spatial detail (resolution), generally obtained through precise field measurements, and a sufficient coverage of the land surface (extent) provided by satellite images. The difficulty usually lies between these two scales as both signal saturation from satellite data and ground sampling limitations contribute to inaccurate extrapolations. Airborne laser scanning (ALS) data has revolutionized the trade-off between spatial detail and landscape coverage as it gives accurate information of the vegetation’s structure over large areas which can be used to calibrate satellite data. Also recent satellite data of improved spectral and spatial resolutions (Sentinel 2) allow for detailed characterizations of compositional gradients in the vegetation, notably in terms of the abundance of broad functional/optical plant types. Another major obstacle comes from the lack of a temporal perspective on dynamics and disturbances. Growing satellite imagery archives over several decades (45 years; Landsat) and available computing facilities such as Google Earth Engine (GEE) provide new possibilities to track long term successional trajectories and detect significant disturbances (i.e. fire) at a fine spatial detail (30m) and relate them to the current structure and composition of the vegetation. With these game changing tools our objective was to track long-term dynamics of forest-savanna ecotone in the Guineo-Congolian transition area of the Central Region of Cameroon with induced changes in the vegetatio structure and composition within two contrasted scenarios of anthropogenic pressures: 1) the Nachtigal area which is targeted for the dam construction and subject to intense agricultural activities and 2) the Mpem et Djim National Park (MDNP) which has no management plan. The maximum likelihood classification of the Spot 6/7 image aided with the information from the canopy height derived from ALS data discriminated the vegetation types within the Nachtigal area with good accuracy (96.5%). Using field plots data in upscaling aboveground biomass (AGB) form field plots estimates to the satellite estimates with model-based approaches lead to a systematic overestimation in AGB density estimates and a root mean squared prediction error (RMSPE) of up to 65 Mg.ha−1 (90%), whereas calibration with ALS data (AGBALS) lead to low bias and a drop of ~30% in RMSPE (down to 43 Mg.ha−1, 58%) with little effect of the satellite sensor used. However, these results also confirm that, whatever the spectral indices used and attention paid to sensor quality and pre-processing, the signal is not sufficient to warrant accurate pixel wise predictions, because of large relative RMSPE, especially above (200–250 Mg.ha−1). The design-based approach, for which average AGB density values were attributed to mapped land cover classes, proved to be a simple and reliable alternative (for landscape to region level estimations), when trained with dense ALS samples. AGB and species diversity measured within 74 field inventory plots (distributed along a savanna to forest successional gradient) were higher for the vegetation located in the MDNP compared to their pairs in the Nachtigal area. The automated unsupervised long-term (45 years) land cover change monitoring from Landsat image archives based on GEE captured a consistent and regular pattern of forest progression into savanna at an average rate of 1% (ca. 6 km².year-1). No fire occurrence was captured for savanna that transited to forest within five years of monitoring. Distinct assemblages of spectral species are apparent in forest vegetation which is consistent with the age of transition. As forest gets older AGBALS recovers at a rate of 4.3 Mg.ha-1.year-1 in young forest stands ( Note de contenu : Chapter 1. Generalities
1.1 Introduction
1.2 Literature Review
Chapter 2. Material And Methods
2.1 Material
2.2 Methods
Chapter 3. Results And Discussion
3.1 Results
3.2 Discussion
Chapter 4. Conclusion And Perspectives
4.1 Conclusion
4.2 PerspectivesNuméro de notice : 26820 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Thèse étrangère Note de thèse : Thèse de doctorat : Botanique-Ecologie : Yaoundé : 2022 Organisme de stage : Institut de Recherche pour le Développement IRD nature-HAL : Thèse DOI : sans Date de publication en ligne : 13/04/2022 En ligne : https://hal.inrae.fr/tel-03528875/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100465 SenRVM: A multi-modal deep learning regression methodology for continuous vegetation monitoring with dense temporal NDVI time series / Anatol Garioud (2022)
![]()
Titre : SenRVM: A multi-modal deep learning regression methodology for continuous vegetation monitoring with dense temporal NDVI time series Type de document : Article/Communication Auteurs : Anatol Garioud , Auteur ; Silvia Valero, Auteur ; Clément Mallet
, Auteur
Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN Année de publication : 2022 Conférence : LPS 2022, ESA Living Planet Symposium 22/05/2022 27/05/2022 Bonn Allemagne programme sans actes Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] dynamique de la végétation
[Termes IGN] image Sentinel-MSI
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] régression
[Termes IGN] série temporelle
[Termes IGN] surveillance de la végétationRésumé : (auteur) The Earth's biosphere and the phenology of vegetation are at the heart of climatic, economic and social concerns. Human activities have led to a significant degradation of ecosystem services (e.g. carbon sequestration, biodiversity, water quality, flood, and erosion regulation) provided by various extensive ecosystems such as forests, grasslands or crops.
A key parameter for relevant climate modeling, public policy implementations or commercial applications is the temporal resolution at which vegetation is observed. As a tool providing synoptic and regular coverage of Earth’s surfaces, satellite Earth Observation has been increasingly adopted, among others, for estimating biomass, yields, modeling different fluxes or detecting changes. Optical images have been historically used for vegetation monitoring, considering their efficient discrimination of phenomena related to photosynthetic activity.
To deal with missing data due to clouds, many interpolation strategies integrating one or more optical sensors have been developed. Most of these strategies are based on trend modelling that does not reflect the real evolution of the vegetation cover in many cases (sudden climatic impact, man-made effects). As a result, data that may be weeks or months apart are often interpolated on areas suffering from high cloud cover.
Copernicus Sentinels provide new opportunities and unprecedented observations for the monitoring of vegetation’s dynamics. In particular, concordant optical and SAR data sets provided by the Sentinel-1 and 2 satellites open the door to new multi-sensor methodologies aiming at the reconstruction of missing information.
Taking into account the still numerous non-cloudy observations provided by the Sentinel-2 satellites, a deep learning regression methodology, namely the Sentinels Regression for Vegetation Monitoring (SenRVM), has been developed. Its goal is the translation of SAR features acquired regardless of the climatic conditions into NDVI. The developed architecture integrates several deep learning architectures such as Multilayer Perceptron and Recurrent Neural Networks. The SenRVM regression strategy proposes the integration of auxiliary data such as climatic and topographic features. This allows accurate NDVI time series to be predicted by minimizing effects exogenous to the vegetation’s phenology through SAR acquisitions contextualization.
Object-oriented analysis of the results is carried out on large scale areas for various vegetation types with distinct phenologies (grasslands, crops and forests). The results are analyzed by taking into account spatial and temporal aspects or with an ablation study of the Network’s inputs. The proposed approach is further compared with traditional interpolation methods exploiting monomodal (Whittaker smoothing, linear weighted interpolation) or multimodal (Random Forest, Gaussian Regression Processes, single Multilayer Perceptron) features.
The potential of high-temporal NDVI time series obtained by the SenRVM method for several vegetation-related applications is subsequently illustrated. In particular, the interest of the obtained time series to observe the phenology and its associated parameters of the three main vegetation classes is presented.Numéro de notice : C2022-011 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Poster nature-HAL : Poster-avec-CL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100786 Documents numériques
peut être téléchargé
SenRVM - posterAdobe Acrobat PDF
Titre : Vegetation index and dynamics Type de document : Monographie Auteurs : Eusebio Cano Carmona, Éditeur scientifique Editeur : London [UK] : IntechOpen Année de publication : 2022 Importance : 350 p. ISBN/ISSN/EAN : 978-1-83969-385-4 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatiale
[Termes IGN] analyse spectrale
[Termes IGN] Autocad Map
[Termes IGN] carte de la végétation
[Termes IGN] changement d'utilisation du sol
[Termes IGN] Colombie
[Termes IGN] couvert forestier
[Termes IGN] dynamique de la végétation
[Termes IGN] écosystème urbain
[Termes IGN] flore endémique
[Termes IGN] image aérienne
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] Inde
[Termes IGN] indice de diversité
[Termes IGN] indice de végétation
[Termes IGN] milieu urbain
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] outil d'aide à la décision
[Termes IGN] Pakistan
[Termes IGN] pédologie locale
[Termes IGN] Pennsylvanie (Etats-Unis)
[Termes IGN] Pinus sylvestris
[Termes IGN] système d'information géographique
[Termes IGN] traitement d'imageIndex. décimale : 35.41 Applications de télédétection - végétation Résumé : (Editeur) The book contemplates different ways of approaching the study of vegetation as well as the type of indices to be used. However, all the works pursue the same objective: to know and interpret nature from different points of view, either through knowledge of nature in situ or the use of technology and mapping using satellite images. Chapters analyze the ecological parameters that affect vegetation, the species that make up plant communities, and the influence of humans on vegetation. Note de contenu : 1. Introductory Chapter: Methodological Aspects for the Study of Vegetation / Eusebio Cano Carmona, Ricardo Quinto Canas, Ana Cano Ortiz and Carmelo María Musarella
2. Using GIS and the Diversity Indices: A Combined Approach to Woody Plant Diversity in the Urban Landscape / Tuba Gül Doğan and Engin Eroğlu
3. Classical and Modern Remote Mapping Methods for Vegetation Cover / Algimantas Česnulevičius, Artūras Bautrėnas, Linas Bevainis and Donatas Ovodas
4. Assessment of the State of Forest Plant Communities of Scots Pine (Pinus sylvestris L.) in the Conditions of Urban Ecosystems / Elena Runova, Vera Savchenkova, Ekaterina Demina-Moskovskaya and Anastasia Baranenkova
5. Landscape Genetics and Phytogeography of Criollo Avocadoes Persea americana from Northeast Colombia / Clara Inés Saldamando-Benjumea, Gloria Patricia Cañas-Gutiérrez, Jorge Muñoz and Rafael Arango Isaza
6. The Use of NDVI and NDBI to Provide Subsidies to Public Manager’s Decision Making on Maintaining the Thermal Comfort in Urban Areas / Arthur Santos, Fernando Santil and Claudionor Silva
7. Detailed Investigation of Spectral Vegetation Indices for Fine Field-Scale Phenotyping / Maria Polivova and Anna Brook
8. Predictive Models for Reforestation and Agricultural Reclamation: A Clearfield County, Pennsylvania Case Study / Zhi Yue and Jon Bryan Burley
9. Dynamic-Catenal Phytosociology for Evaluating Vegetation / Sara del Río, Raquel Alonso-Redondo, Alejandro González-Pérez, Aitor Álvarez-Santacoloma, Giovanni Breogán Ferreiro Lera and Ángel Penas
10. Germination and Seedling Growth of Entandrophragma bussei Harms ex Engl. from Wild Populations / Samora M. Andrew, Siwa A. Kombo and Shabani A.O. Chamshama
11. Spatial Dynamics of Forest Cover and Land Use Changes in the Western Himalayas of Pakistan / Amjad ur Rahman, Esra Gürbüz, Semih Ekercin and Shujaul Mulk Khan
12. Understanding Past and Present Vegetation Dynamics Using the Palynological Approach: An Introductory Discourse / Sylvester Onoriode Obigba
13. Forest Vegetation and Dynamics Studies in India / Madan Prasad Singh, Manohara Tattekere Nanjappa, Sukumar Raman, Suresh Hebbalalu Satyanatayana, Ayyappan Narayanan, Ganesan Renagaian and Sreejith Kalpuzha Ashtamoorthy
14. Photosynthetic Antenna Size Regulation as an Essential Mechanism of Higher Plants Acclimation to Biotic and Abiotic Factors: The Role of the Chloroplast Plastoquinone Pool and Hydrogen Peroxide / Maria M. Borisova-Mubarakshina, Ilya A. Naydov, Daria V. Vetoshkina, Marina A. Kozuleva, Daria V. Vilyanen, Natalia N. Rudenko and Boris N. Ivanov
15. Rockbee Repellent Endemic Plant Species of Andaman-Nicobar Archipelago in the Bay of Bengal / Sam Paul Mathew and Raveendranpillai Prakashkumar
16. Evaluating Insects as Bioindicators of the Wetland Environment Quality (Arid Region of Algeria) / Brahimi Djamel, Rahmouni Abdelkader, Brahimi Abdelghani and Mesli LotfiNuméro de notice : 26797 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.5772/intechopen.87465 Date de publication en ligne : 23/02/2022 En ligne : https://doi.org/10.5772/intechopen.87465 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100059 Inflation of wood resources in European forests: The footprints of a big-bang / Jean-Daniel Bontemps in Plos one, vol 16 n° 11 (November 2021)
PermalinkModeling in forestry using mixture models fitted to grouped and ungrouped data / Eric K. Zenner in Forests, vol 12 n° 9 (September 2021)
PermalinkModels for integrating and identifying the effect of senescence on individual tree survival probability for Norway spruce / Jouni Siipilehto in Silva fennica, vol 55 n° 2 (April 2021)
PermalinkThe social drift of trees. Consequence for growth trend detection, stand dynamics, and silviculture / Hans Pretzsch in European Journal of Forest Research, vol 140 n° 3 (June 2021)
PermalinkCanopy openness and exclusion of wild ungulates act synergistically to improve oak natural regeneration / Julien Barrere in Forest ecology and management, Vol 487 ([01/05/2021])
PermalinkChemical interaction between Quercus pubescens and its companion species is not emphasized under drought stress / H. Hashoum in European Journal of Forest Research, vol 140 n° 2 (April 2021)
PermalinkTerrestrial laser scanning intensity captures diurnal variation in leaf water potential / S. Junttila in Remote sensing of environment, Vol 255 (March 2021)
PermalinkAnalysis of plot-level volume increment models developed from machine learning methods applied to an uneven-aged mixed forest / Seyedeh Kosar Hamidi in Annals of Forest Science [en ligne], vol 78 n° 1 (March 2021)
PermalinkContrasting responses of habitat conditions and insect biodiversity to pest- or climate-induced dieback in coniferous mountain forests / Jérémy Cours in Forest ecology and management, vol 482 ([15/02/2021])
PermalinkAn evaluation of multi-species empirical tree mortality algorithms for dynamic vegetation modelling / Timothy Thrippleton in Scientific reports, vol 11 (2021)
Permalink